
Design Theory for Relational 
Databases

FUNCTIONAL DEPENDENCIES

DECOMPOSITIONS

NORMAL FORMS
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Functional Dependencies
X ->Y is an assertion about a relation R that 
whenever two tuples of R agree on all the 
attributes of X, then they must also agree on all 
attributes in set Y.
◦ Say “X ->Y holds in R.”

◦ Convention: …, X, Y, Z represent sets of attributes; A, B, 
C,… represent single attributes.

◦ Convention: no set formers in sets of attributes, just ABC, 
rather than {A,B,C}.
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Splitting Right Sides of FD’s
X->A1A2…An holds for R exactly when each of X->A1, X->A2,…, X->An hold 
for R.

Example: A->BC is equivalent to A->B and A->C.

There is no splitting rule for left sides.

We’ll generally express FD’s with singleton right sides.
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Example: FD’s
Drinkers(name, addr, beersLiked, manf, favBeer)

Reasonable FD’s to assert:
1. name -> addr, favBeer

 Note this FD is the same as name -> addr and name -> favBeer.

2. beersLiked -> manf
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Example: Possible Data
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name addr beersLiked manf favBeer
Janeway Voyager Bud A.B. WickedAle
Janeway Voyager WickedAle Pete’s WickedAle
Spock Enterprise Bud A.B. Bud

Because name -> addr Because name -> favBeer

Because beersLiked -> manf
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DB Administrator Task
Assume we a table/view (e.g., with ..., postal code, city, province, country, 
date, year, month, day, time, hour, minutes, seconds etc.)

◦ It is denormalized (Data Warehouse)

◦ e.g., a materialized view (joining: sales, location and date/time table)

Describe what are the reasonable FDs to assert in that table/view
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Keys of Relations
Set of attributes K is a superkey for relation R if K functionally 
determines all attributes of R.

K is a key for R if K is a superkey, but no proper subset of K is a 
superkey.
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Example: Superkey
Drinkers(name, addr, beersLiked, manf, favBeer)

Is {name, beersLiked} a superkey? 
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Example: Superkey
Drinkers(name, addr, beersLiked, manf, favBeer)

{name, beersLiked} is a superkey because together these attributes 
determine all the other attributes.

◦ name, beersLiked -> addr, favBeer, beersLiked, manf, favBeer
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Example: Key
Is {name, beersLiked} a key?
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Example: Key
{name, beersLiked} is a key because neither {name} nor {beersLiked} is a 
superkey.

◦ name doesn’t -> manf; beersLiked doesn’t -> addr.

There are no other keys, but lots of superkeys.
◦ Any superset that contains {name, beersLiked}.
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Where Do Keys Come From?
1. Just assert a key K.

◦ The only FD’s are K -> A for all attributes A.

2. Assert FD’s and deduce the keys by systematic exploration.
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More FD’s From “Physics”
Example: “no two courses can meet in the same room at the same 
time” tells us: hour, room -> course.
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Inferring FD’s
We are given FD’s X1 -> A1, X2 -> A2,…, Xn -> An , and we want to know 
whether an FD Y -> B must hold in any relation that satisfies the given FD’s.

◦ Example: If A -> B and B -> C hold, surely A -> C holds, even if we don’t say so.

Important for design of good relation schemas.
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Inference Test
To test if Y -> B, start by assuming two tuples agree in all attributes of Y.

Y

0000000. . . 0

00000?? . . . ?
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Inference Test – (2)
Use the given FD’s to infer that these tuples must also agree in certain 
other attributes.

◦ If B is one of these attributes, then Y -> B is true.

◦ Otherwise, the two tuples, with any forced equalities, form a two-tuple relation 
that proves Y -> B does not follow from the given FD’s.
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Example/Task
◦ Assume ABC -> D, D -> F, F -> GH, I -> J.

◦ Is it true ABC -> G?

◦ Is it true ABC -> GH?

◦ Is it true ABC -> GHI?

◦ Use inference test to provide justification to your answer.
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Closure Test
An easier way to test is to compute the closure of Y, denoted Y +.

Closure Y + is the set of attributes that Y functionally determines.

Basis: Y + = Y.

Induction: Look for an FD’s left side X that is a subset of the current Y +.  
If the FD is X -> A, add A to Y +.
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Y+

new Y+

X A
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Example – Closure Test
◦ Assume ABCD -> F, ABC -> D, F -> GH, I -> JGH.

◦ What is the closure of ABC, ABC +?
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Example – Closure Test
◦ Assume ABCD -> F, ABC -> D, F -> GH, I -> JGH.

◦ What is the closure of ABC, ABC +?
1. Basis ABC + = ABC
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Example – Closure Test
◦ Assume ABCD -> F, ABC -> D, F -> GH, I -> JGH.

◦ What is the closure of ABC, ABC +?
1. Basis ABC + = ABC

2. ABC + = ABC + union D, since ABC is a subset of ABC + and ABC -> D
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Example – Closure Test
◦ Assume ABCD -> F, ABC -> D, F -> GH, I -> JGH.

◦ What is the closure of ABC, ABC +?
1. Basis ABC + = ABC

2. ABC + = ABC + union D, since ABC is a subset of ABC + and ABC -> D

3. ABC + = ABC + union F, since ABCD is a subset of ABC + and ABCD -> F
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Example – Closure Test
◦ Assume ABCD -> F, ABC -> D, F -> GH, I -> JGH.

◦ What is the closure of ABC, ABC +?
1. Basis ABC + = ABC

2. ABC + = ABC + union D, since ABC is a subset of ABC + and ABC -> D

3. ABC + = ABC + union F, since ABCD is a subset of ABC + and ABCD -> F

4. ABC + = ABC + plus GH, since F is a subset of ABC + and F -> GH

Therefore ABC + = ABCDFGH.

Hence, for instance, ABC -> H is true but ABC -> I is not

24
DATABASE SYSTEMS AND CONCEPTS, CSCI 3030U, UOIT,                

COURSE INSTRUCTOR: JAREK SZLICHTA



Task
◦ Assume AB -> CH, C -> D, HD -> A, ACH -> EFG, I -> A.

◦ What is the closure of CH, CH +?

Is it true that CH -> G and CH -> B?.
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Finding All Implied FD’s
Motivation: “normalization,” the process where we break a relation schema 
into two or more schemas.

Example: ABCD with FD’s AB ->C,         C ->D, and D ->A.
◦ Assume we decompose into ABC, AD.  What FD’s hold in ABC ?

◦ AB ->C holds but how about C ->A? Perform Inference Test OR Closure Test
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Finding All Implied FD’s
Motivation: “normalization,” the process where we break a relation schema 
into two or more schemas.

Example: ABCD with FD’s AB ->C,         C ->D, and D ->A.
◦ Decompose into ABC, AD.  What FD’s hold in ABC ?

◦ Not only AB ->C, but also C ->A? C+ = CDA Yes!
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Basic Idea for decomposing 
table

1. Start with given FD’s and find all FD’s that follow from the given 
FD’s.

2. Restrict to those FD’s that involve only attributes of the projected 
schema.
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Simple, Exponential Algorithm
1. For each set of attributes X, compute X +.

2. Finally, use only FD’s involving projected attributes.
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A Few Tricks
No need to compute the closure of the set of all attributes.

If we find X + = all attributes, so is the closure of any superset of X.
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Example: Projecting FD’s
ABC with FD’s A ->B and B ->C.  Project onto AC.

◦ A +=ABC ; yields A ->B, A ->C.
◦ We do not need to compute AB + or AC + or ABC +.

◦ B +=BC ; yields B ->C.

◦ C +=C ; yields nothing.

◦ BC +=BC ; yields nothing.
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Example -- Continued
Resulting FD’s: A ->B, A ->C, and  B ->C.

Projection onto AC : A ->C.
◦ Only FD that involves a subset of {A,C }.
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A Geometric View of FD’s
Imagine the set of all instances of a particular relation.

That is, all finite sets of tuples that have the proper number of 
components.

Each instance is a point in this space.
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Example: R(A,B)
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{(1,2), (3,4)}

{}

{(1,2), (3,4), (1,3)}

{(5,1)}
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An FD is a Subset of Instances
For each FD X -> A there is a subset of all instances that satisfy the 
FD.

We can represent an FD by a region in the space.

Trivial FD = an FD that is represented by the entire space.
◦ Example: A -> A.
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Example: A -> B for R(A,B)
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{(1,2), (3,4)}

{}

{(1,2), (3,4), (1,3)}

{(5,1)}
A -> B
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Representing Sets of FD’s
If each FD is a set of relation instances, then a collection of FD’s 
corresponds to the intersection of those sets.

◦ Intersection = all instances that satisfy all of the FD’s.
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Example
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A->B

B->C

CD->A

Instances satisfying
A->B, B->C, and
CD->A
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Implication of FD’s
If an FD Y -> B follows from FD’s      X1 -> A1,…,Xn -> An , then the region in 
the space of instances for Y -> B must include the intersection of the 
regions for the FD’s Xi -> Ai .

◦ That is, every instance satisfying all the FD’s Xi -> Ai surely satisfies Y -> B.
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Example
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A->B A->C B->C
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Relational Schema Design
Goal of relational schema design is to avoid anomalies and redundancy.

◦ Update anomaly : one occurrence of a fact is changed, but not all 
occurrences.

◦ Deletion anomaly : valid fact is lost when a tuple is deleted.
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Example of Bad Design
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Drinkers(name, addr, beersLiked, manf, favBeer)

name addr beersLiked manf favBeer
Janeway Voyager Bud A.B. WickedAle
Janeway ??? WickedAle Pete’s ???
Spock Enterprise Bud ??? Bud

Data is redundant, because each of the ???’s can be figured
out by using the FD’s name -> addr favBeer and
beersLiked -> manf. 
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This Bad Design Also
Exhibits Anomalies
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name addr beersLiked manf favBeer
Janeway Voyager Bud A.B. WickedAle
Janeway Voyager WickedAle Pete’s WickedAle
Spock Enterprise Bud A.B. Bud

• Update anomaly: if Janeway is transferred to Intrepid,
will we remember to change each of her tuples?

• Deletion anomaly: If nobody likes Bud, we lose track
of the fact that Anheuser-Busch manufactures Bud.
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Boyce-Codd Normal Form 
We say a relation R is in BCNF if whenever X ->Y is a nontrivial FD that 
holds in R, X is a superkey.

◦ nontrivial means Y is not contained in X.

◦ Remember, a superkey is any superset of a key
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Example
Drinkers(name, addr, beersLiked, manf, favBeer)

FD’s: name->addr, favBeer,   beersLiked->manf

In each FD, the left side is not a superkey.

Any one of these FD’s shows Drinkers is not in BCNF
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Another Example
Beers(name, manf, manfAddr)

FD’s: name->manf,   manf->manfAddr

Only key is {name}.

name->manf does not violate BCNF because name is a superkey, but manf-
>manfAddr does because manf is not a superkey.
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Decomposition into BCNF
Given: relation R with FD’s F.

Look among the given FD’s for a BCNF violation: X ->Y.
◦ Compute X +
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Decompose R Using X  -> Y
Replace R by relations with schemas:

1. R1 = X +.

2. R2 = R – (X + – X ) = R – X + + X .

Project given FD’s F onto the two new relations.
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Decomposition Picture
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R-X + X X +-X

R2

R1

R
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Example: BCNF Decomposition

Drinkers(name, addr, beersLiked, manf, favBeer)

F = name->addr, name -> favBeer, beersLiked->manf

Pick BCNF violation name->addr.

Closure of the left side: {name}+ = {name, addr, 
favBeer}.

Decomposed relations:
1. Drinkers1(name, addr, favBeer)

2. Drinkers2(name, beersLiked, manf)
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Example -- Continued
We are not done; we need to check Drinkers1 and Drinkers2 for BCNF.

Projecting FD’s is easy here.

For Drinkers1(name, addr, favBeer), relevant FD’s are name->addr and   
name->favBeer.

◦ Thus, Drinkers1 is in BCNF.
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Example -- Continued
For Drinkers2(name, beersLiked, manf), one of the FDs is beersLiked-
>manf but beersLiked is not a superkey.

◦ Violation of BCNF.

beersLiked+ = {beersLiked, manf}, so we decompose Drinkers2 into:
1. Drinkers3(beersLiked, manf)

2. Drinkers4(name, beersLiked)
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Example -- Concluded
The resulting decomposition of Drinkers :

1. Drinkers1(name, addr, favBeer)

2. Drinkers3(beersLiked, manf)

3. Drinkers4(name, beersLiked)

Notice: Drinkers1 tells us about drinkers, 
Drinkers3 tells us about beers, and Drinkers4
tells us the relationship between drinkers and 
the beers they like.
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Third Normal Form -- Motivation
There is one structure of FD’s that causes trouble when we decompose.

AB ->C and C ->B.
◦ Example: A = street address, B = city,      C = zip code.

There are two keys, {A,B} and {A,C}.

C ->B is a BCNF violation, so we must decompose into AC, BC. 
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We Cannot Enforce FD’s
The problem is that if we use AC and BC as our database schema, we 
cannot enforce the FD AB ->C by checking FD’s in these decomposed 
relations.

Example with A = street, B = city, and C = zip on the next slide.
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An Unenforceable FD
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street zip

545 Tech Sq. 02138
545 Tech Sq. 02139

city zip

Cambridge 02138
Cambridge 02139

Join tuples with equal zip codes.

street city zip

545 Tech Sq. Cambridge 02138
545 Tech Sq. Cambridge 02139

Although no FD’s were violated in the decomposed relations,
FD street city -> zip is violated by the database as a whole.
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3NF Let Us Avoid This Problem
3rd Normal Form (3NF) modifies the BCNF condition so we do not have to 
decompose in this problem situation.

An attribute is prime if it is a member of any key.

X ->A violates 3NF if and only if X is not a superkey, and also A is not prime.
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Example: 3NF
In our problem situation with FD’s     AB ->C and C ->B, we have keys AB
and AC.

Thus A, B, and C are each prime.

Although C ->B violates BCNF, it does not violate 3NF.
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What 3NF and BCNF Give You
There are two important properties of a decomposition:

1. Lossless Join : it should be possible to project the original relations onto the 
decomposed schema, and then reconstruct the original.

2. Dependency Preservation : it should be possible to check in the projected 
relations whether all the given FD’s are satisfied.
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3NF and BCNF -- Continued
We can get (1) with a BCNF decomposition.

We can get both (1) and (2) with a 3NF decomposition.

But we can’t always get (1) and (2) with a BCNF decomposition.
◦ street-city-zip is an example.
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3NF Synthesis Algorithm
We can always construct a decomposition into 3NF relations with a 
lossless join and dependency preservation.

Need minimal basis for the FD’s:
1. Right sides are single attributes.

2. No FD can be removed.

3. No attribute can be removed from a left side.
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Constructing a Minimal Basis
1. Split right sides.

2. Repeatedly try to remove an FD and see if the remaining FD’s are 
equivalent to the original.

3. Repeatedly try to remove an attribute from a left side and see if 
the resulting FD’s are equivalent to the original.
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3NF Synthesis – (2)
One relation for each FD in the minimal basis.

◦ Schema is the union of the left and right sides.

If no key is contained in an FD, then add one relation whose schema is 
some key.
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Example: 3NF Synthesis
Relation R = ABCD.

FD’s A->BC is equivalent to:

FD’s A->B and A->C.

Decomposition: AB and AC from the FD’s, plus AD for a key. 
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Why It Works
Preserves dependencies: each FD from a minimal basis is contained in a 
relation, thus preserved.

Lossless Join: yes

3NF: yes.
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Actions
Review slides!

Read Chapters 3.1. – 3.5 (Design Theory for Relational Databases). 
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