XML

Document Type Definitions

XML

e XML stands for eXtensible Markup Language.
* XML was designed to describe data.

* XML has come into common use for the interchange of data over the
Internet.

Well-Formed and Valid XML

* Well-Formed XML allows you to invent your own tags.
* Valid XML conforms to a certain DTD (Document Type Definition).

Database Systems and Concepts, CSCI 3030U,
Course Instructor: Jarek Szlichta

Well-Formed XML

e Start the document with a declaration, surrounded by <?xml ... ?>.
* Normal declaration is:

<?xml version = ”1.0” standalone = "yes” ?>
* “standalone” = “no DTD provided.”

* Balance of document is a root tag surrounding nested tags.

Database Systems and Concepts, CSCI 3030U,
Course Instructor: Jarek Szlichta

Tags

 Tags are normally matched pairs, as <FOO> ... </FOO>.
* Unmatched tags also allowed, as <FOO/>

* XML tags are case-sensitive.

Database Systems and Concepts, CSCI 3030U,
Course Instructor: Jarek Szlichta

Example: Well-Formed XML

<?xml version = “1.0” standalone = “yes” ?> A NAME
<BARS> subelement

<BAR>kNAME>Joe’s Bar</NAME>
?EER><NAI\/IE>Bud</NAI\/IE>

<PRICE>2.50</PRICE></BEER> ‘\
<BEEKR><NAME>Miller</NAME>
RICE>3.00</PRICE></BEER> A BEER

subelement
4&&3\
<BAR> ... Tags surrounding

</BARS> a BEER element

Root tag

Database Systems and Concepts, CSCI 3030U,
Course Instructor: Jarek Szlichta

DTD Structure

<!DOCTYPE <root tag> |
<!ELEMENT <name> (<components>) >
... Mmore elements.. ..

] >

Database Systems and Concepts, CSCI 3030U,
Course Instructor: Jarek Szlichta

DTD Elements

* The description of an element consists of its name (tag), and a
description of any nested tags.
* Includes order of subtags and their multiplicity.

* Leaves (text elements) have #PCDATA (Parsed Character DATA) in
place of nested tags.

Database Systems and Concepts, CSCI 3030U,
Course Instructor: Jarek Szlichta

Example: DTD

A BARS object has
<IDOCTYPE BARS | zero or more BAR's

<IELEMENT|BARS (BAR*)> nested within.

<IELEMENT|BAR (NAME, BEER+)> AR P o
<|ELEMENT [NAME (#PCDATA)> NAME and one
<IELEMENT [BEER|(NAME, PRICE)> | o wbre “EEX

subobjects.
<IELEMENT [PRICE (BPCDATA)S | >\
> / A BEER has a

NAME and PRICE NAME and a
are text. PRICE.

Database Systems and Concepts, CSCI 3030U,
Course Instructor: Jarek Szlichta

Element Descriptions

* Subtags must appear in order shown.

* A tag may be followed by a symbol to indicate its multiplicity.
e * =zero or more.
* +=0ne or more.
e ? =7zero or one.

e Symbol | can connect alternative sequences of tags.

Database Systems and Concepts, CSCI 3030U,
Course Instructor: Jarek Szlichta

10

Example: Element Description

A name is an optional title (e.g., “Prof.”), a first name, and a last name,
in that order, or it is an IP address:

<!ELEMENT NAME (

(TITLE?, FIRST, LAST) | IPADDR
) >

Database Systems and Concepts, CSCI 3030U, 11
Course Instructor: Jarek Szlichta

Use of DTD’s

1.
2.

Set standalone = “no”.

Either:
a) Include the DTD as a preamble of the XML document, or

b) Follow DOCTYPE and the <root tag> by SYSTEM and a path to the file
where the DTD can be found.

Database Systems and Concepts, CSCI 3030U,
Course Instructor: Jarek Szlichta

12

Example: (a)

<?xml version = “1.0” | “no” ?>

The DTD
<BARS>

/ The document
<BAR><NAME>Joe’s Bar</NAME>

<BEER><NAME>Bud</NAME> <PRICE>2.50</PRICE></BEER>
<BEER><NAME>Miller</NAME> <PRICE>3.00</PRICE></BEER>
</BAR>
<BAR> ...
</BARS>

Database Systems and Concepts, CSCI 3030U,
Course Instructor: Jarek Szlichta

13

Example: (b)

eAssume the BARS DTD is in file bar.dtd.

<?xml version = “1.0” standalone = “no” ?>
<IDOCTYPE BARS SYSTEM ”bar.dtd”>
<BARS>
<BAR><NAME>Joe’s Bar</NAME>
<BEER><NAME>Bud</NAME>
<PRICE>2.50</PRICE></BEER>
<BEER><NAME>Miller</NAME>
<PRICE>3.00</PRICE></BEER>

</BAR>
<BAR> ...
</BARS>

Database Systems and Concepts, CSCI 3030U,
Course Instructor: Jarek Szlichta

Get the DTD
from the file
bar.dtd

14

Attributes

* Opening tags in XML can have attributes.
* [na DTD,
<!/ATTLISTE...>

declares attributes for element E, along with its datatype.

Database Systems and Concepts, CSCI 3030U,
Course Instructor: Jarek Szlichta

15

. Attributes

* Bars can have an attribute kind, a character string describing the bar.
<!'ELEMENT BAR (NAME BEERY*)>
<!ATTLIST BAR kind |[CDATA

#IMPLIED> '\

\ Character string

Attribute is optional type; no tags

opposite: #REQUIRED

Database Systems and Concepts, CSCI 3030U, 16
Course Instructor: Jarek Szlichta

. Attribute Use

*In a document that allows BAR tags, we might see:

<BAR kind = "“sushi’”>

<NAME>Homma'’ s</NAME>

<BEER><NAME>Sapporo</NAME>
<PRICE>5.00</PRICE></BEER>

</BAR>

Database Systems and Concepts, CSCI 3030U,
Course Instructor: Jarek Szlichta

17

ID’s and IDREF’s

 Attributes can be pointers from one object to another.

* Allows the structure of an XML document to be a general graph,
rather than just a tree.

Database Systems and Concepts, CSCI 3030U,
Course Instructor: Jarek Szlichta

18

Creating ID’s

* Give an element E an attribute A of type ID.

* When using tag <E > in an XML document, give its attribute A a
unique value.

* Example:
<E A = "xyz”">

Database Systems and Concepts, CSCI 3030U,
Course Instructor: Jarek Szlichta

19

Creating IDREF’s

* To allow elements of type F to refer to another element with an ID
attribute, give F an attribute of type IDREF.

* Or, let the attribute have type IDREFS, so the F -element can refer to
any number of other elements.

Database Systems and Concepts, CSCI 3030U,
Course Instructor: Jarek Szlichta

20

. ID’s and IDREF’s

* A new BARS DTD includes both BAR and BEER
subelements.

e BARS and BEERS have ID attributes name.

* BARS have SELLS subelements, consisting of a
number (the price of one beer) and an IDREF
theBeer leading to that beer.

* BEERS have attribute sol1dBy, which is an IDREFS
leading to all the bars that sell it.

21

Bar elements have name
The DTD as an ID attribute and
have one or more

<IDOCTYPE BARS [SELLS subelements.

<lELEMENT BARS (BAR*, BEER*)>
SELLS elements

<!ELEMENT have a number
<IATTLIST B (the price) and

<!ELEMEN LLS (#PCDATA)> one reference
<!ATTE:'FF\SE% theBeer IDREF #REQL;éDgO\abeer'
<!ELEMENT BEER|EMPTY3
<IATTLIST BEER[name ID #REQUIRED>
<IATTLIST BEER|soldBy IDREFS #IMPLIED>
> 1
Explained Beer elements have an ID attribute called hame,
next and a soldBy attribute that is a set of Bar names.

\'4

Database Systems and Concepts, CSCI 3030U, o)
Course Instructor: Jarek Szlichta

Example: A Document

<BARS>

<BAR name = "JoesBar”>
<SELLS theBeer = "Bud”>2.50</SELLS>
<SELLS theBeer = ”"Miller”>3.00</SELLS>

</BAR> ...

<BEER name = "Bud” soldBy = “JoesBar
SuesBar ...” /> ...

</BARS>

Database Systems and Concepts, CSCI 3030U,
Course Instructor: Jarek Szlichta

23

Query Languages for XML

XPath
XQuery

The XPath/XQuery Data Model

Ill

. Corresponding to the fundamental “relation” of the relational

model is: sequence of items.
. An item is either:

1. A primitive value, e.g., integer or string.
2. Anode (defined next).

Database Systems and Concepts, CSCI 3030U,
Course Instructor: Jarek Szlichta

25

Principal Kinds of Nodes

1. Document nodes represent entire documents.

2. Elements are pieces of a document consisting of some opening
tag, its matching closing tag (if any), and everything in between.

3. Attributes names that are given values inside opening tags.

Database Systems and Concepts, CSCI 3030U, 2%
Course Instructor: Jarek Szlichta

DTD for Running Example

<IDOCTYPE BARS |
<IELEMENT BARS (BAR*, BEER*)>
<IELEMENT BAR (PRICE+)>
<IATTLIST BAR name ID #REQUIRED>
<IELEMENT PRICE (#PCDATA)>
<IATTLIST PRICE theBeer IDREF #REQUIRED>
<IELEMENT BEER EMPTY>
<IATTLIST BEER name ID #REQUIRED>
<IATTLIST BEER soldBy IDREFS #IMPLIED>
1>

Example Document

Document node is all of this, plus
5 .
the header (<? xml version...). An element node

<BARS> l

4BAR name = “JoesBar”>

<PRICE theBeer = “Bud”>2.50</PRICE>
<PRICE theBeer = "Miller”>3.00</PRICE>
</BAR> ...

<BEER name = "Bud” soldBy = “JoesBar

SuesBar ... " /> ... |
</BARS> An attribute node

Database Systems and Concepts, CSCI 3030U,

Course Instructor: Jarek Szlichta 28

Nodes as Semistructured Data

(%8

........................
o

i
.
-t
.
i
.
i
.
s
.
.

@ theBeer\" @ theBeer =
= "Bud” "Miller” Rose =document

Blue = element

@ @ Gold = attribute

Purple = primitive
value

Paths in XML Documents

» XPath is a language for describing paths in XML documents.
* The result of the described path is a sequence of items.

Path Expressions

» Simple path expressions are sequences of slashes (/) and tags,
starting with /.
: /BARS/BAR/PRICE

e Construct the result by starting with just the doc node and
processing each tag from the left.

Example: /BARS

<BARS>
<BAR name = "“JoesBar”>
<PRICE theBeer = “Bud”>2.50</PRICE>
<PRICE theBeer = "Miller”>3.00</PRICE>
</BAR> ...
<BEER name = "Bud” soldBy = “JoesBar

SuesBar ... " /> ...
</BARS>
\ One item, the
Database Systems and Concepts, CSCI 3030U, BARS element 32

Course Instructor: Jarek Szlichta

Example: /BARS/BAR

<BARS>

4BAR name = "JoesBar”>

<PRICE theBeer ="Bud”>2.50</PRICE>
<PRICE theBeer = "Miller”>3.00</PRICE>
</BAR> ...

1
<BEER name ="”Bud” soldBy = {JoesBar

SuesBar ...” /> ...
</BARS>

This BAR element followed by
all the other BAR elements

Database Systems and Concepts, CSCI 3030U,
Course Instructor: Jarek Szlichta

33

. /BARS/BAR/PRICE

<BARS>
<BAR name = "JoesBar”>

<PRICE theBeer ="Bud”>2.50</PRICE>

<PRICE theBeer = "MiNer”>3.00</PRICE>

</BAR> ...
<BEER name = "Bud” soldBy = “JpesBar
SuesBar ...” /> ...

</BARS> by the PRICE elements

of all the other bars.

Database Systems and Concepts, CSCI 3030U,
Course Instructor: Jarek Szlichta

These PRICE elements followed

34

Attributes in Paths

* Instead of going to subelements with a given tag, you can go to an
attribute of the elements you already have.

* An attribute is indicated by putting @ in front of its name.

. /BARS/BAR/PRICE/@theBeer

<BARS>
<BAR name = "JoesBar”>
<PRICE theBeer = “Bud”>2.50</PRICE>
<PRICE theBed(= “Miller”$3.00</PRICE>

</BAR> ...
<BEER name = "Bud™\soldBy = “JoesBar

SuesBar ...” /> ... These attributes contribute

</BARS> "Bud” "Miller” to the result,
followed by other theBeer
values.

Paths that Begin Anywhere

* If the path starts from the document node and begins with //X, then
the first step can begin at the root or any subelement of the root, as
long as the tag is X.

. //PRICE

<BARS>
<BAR name = "JoesBar”’>

<PRICE theBeer ="Bud”>2.50</PRICE>

<PRICE theBeer = "MNer">3.00</PR|CE>

</BAR> ...
<BEER name = "Bud” soldBy\= “JoesBar
SuesBar ...” /> ...

</BARS> These PRICE elements and

any other PRICE elements
in the entire document

Database Systems and Concepts, CSCI 3030U,
Course Instructor: Jarek Szlichta

38

Wild-Card *

A star (*) in place of a tag represents any one tag.

. /*/*/PRICE represents all price objects at the third level of
nesting.

Example: /BARS/*

This BAR element, all other BAR
elements, the BEER element, all

<BARS> J other BEER elements
<BAR name = "JoesBar”> |
<PRICE theBeer = “Bud”>2.50</PRICE>
<PRICE theBeer = "Miller”>3J00</PRICE>
</BAR> ...
<BEER name = "Bud” soldBy = “JoesBar
SuesBar ... " /> ...
</BARS>

Database Systems and Concepts, CSCI 3030U,

Course Instructor: Jarek Szlichta 40

Selection Conditions

* A condition inside [...] may follow a tag.

* If so, then only paths that have that tag and also satisfy the condition
are included in the result of a path expression.

: Selection Condition

. /BARS/BAR/PRICE[}Q\E}\Th :
<BARS> e curren

element.

<BAR name = "JoesBar”>

<PRICE theBeer = “Bud”>2.50</PRICE>

<PRICE theBeer = "Miiller”>3.00</PRICE>

</BAR> ...

The condition that the PRICE be
< $2.75 makes this price but not
the Miller price part of the result.

. Attribute in Selection

« /BARS/BAR/PRICE[@theBeer = "Miller”]
<BARS>

<BAR name ="JoesBar”>
<PRICE theBeer = “Bud”>2.50</PRICE>

<PRICE theBeer = "Miller”>3.00</PRICE>

</BAR> ... T
Now, this PRICE element
is selected, along with
any other prices for Miller.

XQuery

e XQuery extends XPath to a query language that has power similar to

SQL.
* Uses the same sequence-of-items data model.

* XQuery is an expression language.
 Similarly to SQL

More About Item Sequences

* XQuery will sometimes form sequences of sequences.
 All sequences are flattened.
:(12()1(34))=(1234).

T

Empty
sequence

FLWR Expressions

2.
3.

One or more for and/or let clauses.
Then an optional where clause.

A return clause.

Database Systems and Concepts, CSCI 3030U,

Course Instructor: Jarek Szlichta

46

Semantics of FLWR Expressions

* Each creates a loop.
produces only a local definition.

At each iteration of the nested loops, if any, evaluate the
clause.

 If the clause returns TRUE, invoke the clause, and
append its value to the output.

: FOR

Our example Expand the en-

closed string by
BARS document replacing variables

and path exps. by
their values.”

for Sbeer in document{”’bars.xml”)
return

<BEERNAME bee@</BEERNAIVIE>

* Sbeer ranges over the name attributes of all beers in
our example document.

* Result is a sequence of BEERNAME elements:
<BEERNAME>Bud</BEERNAME>
<BEERNAME>Miller</BEERNAME> . . .

/BARS/BEER/@name

LET Clauses

let <variable> := <expression>, . ..

 Value of the variable becomes the sequence of items defined by the
expression.

* Note et does not cause iteration; does.

Database Systems and Concepts, CSCI 3030U,
Course Instructor: Jarek Szlichta

49

LET

let Sd := document(”bars.xml”)
let Sbeers := Sd/BARS/BEER/@name

return
<BEERNAMES> {Sbeers} </BEERNAMES>
e Returns one element with all the names of the beers, like:

<BEERNAMES>Bud Miller ...</BEERNAMES>

Order-By Clauses

* FLWR is really FLWOR: an order-by clause can precede the return.

* Form: order by <expression>
* With optional or

* The expression is evaluated for each assignment to variables.

* Determines placement in output sequence.

: Order-By

e List all prices for Bud, lowest first.
let Sd := document(”bars.xml”)
for $p in $d/BARS/BAR/PRICE[@theBeer="Bud”]

order by Sp
" Order those bindings \

t
return >p by the values inside
5 the elements . tes bindi
Each binding is evaluated e i 0
o iy for $p to PRICE
or the output. Ihe elements.

result is a sequence of
PRICE elements.

Database Systems and Concepts, CSCI 3030U,

Course Instructor: Jarek Szlichta 52

: SQL ORDER BY

e SQL works the same way; it’s the result of the FROM and WHERE that
get ordered.

. Using R(a,b), Then, the b-values

SELECT b FROM R are extracted from these

tuples and printed in the

WHERE b > 10
ORDER_BY a:

same order.

R tuples with b>10
\ are ordered by their
a-values.

Predicates

* Normally, conditions imply existential quantification.
: /BARS/BAR[@name] means “all the bars that have a name.”

: /BARS/BEER[@soldAt = “JoesBar”] gives the set of beers that
are sold at Joe’s Bar.

Actions

* Read Chapters 11 about XML DTD and 12 about Xpath and XQuery
* Review slides!

