XML

Document Type Definitions



XML

e XML stands for eXtensible Markup Language.
* XML was designed to describe data.

* XML has come into common use for the interchange of data over the
Internet.



Well-Formed and Valid XML

* Well-Formed XML allows you to invent your own tags.
* Valid XML conforms to a certain DTD (Document Type Definition).
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Well-Formed XML

e Start the document with a declaration, surrounded by <?xml ... ?>.
* Normal declaration is:

<?xml version = ”1.0” standalone = "yes” ?>
* “standalone” = “no DTD provided.”

* Balance of document is a root tag surrounding nested tags.
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Tags

 Tags are normally matched pairs, as <FOO> ... </FOO>.
* Unmatched tags also allowed, as <FOO/>

* XML tags are case-sensitive.
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Example: Well-Formed XML

<?xml version = “1.0” standalone = “yes” ?> A NAME
<BARS> subelement

<BAR>kNAME>Joe’s Bar</NAME>
?EER><NAI\/IE>Bud</NAI\/IE>

<PRICE>2.50</PRICE></BEER> ‘\
<BEEKR><NAME>Miller</NAME>
RICE>3.00</PRICE></BEER> A BEER

subelement
4&&3\
<BAR> ... Tags surrounding

</BARS> a BEER element

Root tag
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DTD Structure

<!DOCTYPE <root tag> |
<!ELEMENT <name> (<components>) >
... Mmore elements.. ..

] >
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DTD Elements

* The description of an element consists of its name (tag), and a
description of any nested tags.
* Includes order of subtags and their multiplicity.

* Leaves (text elements) have #PCDATA (Parsed Character DATA ) in
place of nested tags.
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Example: DTD

A BARS object has
<IDOCTYPE BARS | zero or more BAR's

<IELEMENT|BARS (BAR*)> nested within.

<IELEMENT|BAR (NAME, BEER+)> AR P o
<|ELEMENT [NAME (#PCDATA)> NAME and one
<IELEMENT [BEER|(NAME, PRICE)> | o wbre “EEX

subobjects.
<IELEMENT [PRICE (BPCDATA)S | >\
> / A BEER has a

NAME and PRICE NAME and a
are text. PRICE.
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Element Descriptions

* Subtags must appear in order shown.

* A tag may be followed by a symbol to indicate its multiplicity.
e * =zero or more.
* +=0ne or more.
e ? =7zero or one.

e Symbol | can connect alternative sequences of tags.
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Example: Element Description

A name is an optional title (e.g., “Prof.”), a first name, and a last name,
in that order, or it is an IP address:

<!ELEMENT NAME (

(TITLE?, FIRST, LAST) | IPADDR
) >
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Use of DTD’s

1.
2.

Set standalone = “no”.

Either:
a) Include the DTD as a preamble of the XML document, or

b)  Follow DOCTYPE and the <root tag> by SYSTEM and a path to the file
where the DTD can be found.
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Example: (a)

<?xml version = “1.0” | “no” ?>

The DTD
<BARS>

/ The document
<BAR><NAME>Joe’s Bar</NAME>

<BEER><NAME>Bud</NAME> <PRICE>2.50</PRICE></BEER>
<BEER><NAME>Miller</NAME> <PRICE>3.00</PRICE></BEER>
</BAR>
<BAR> ...
</BARS>
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Example: (b)

eAssume the BARS DTD is in file bar.dtd.

<?xml version = “1.0” standalone = “no” ?>
<IDOCTYPE BARS SYSTEM ”bar.dtd”>
<BARS>
<BAR><NAME>Joe’s Bar</NAME>
<BEER><NAME>Bud</NAME>
<PRICE>2.50</PRICE></BEER>
<BEER><NAME>Miller</NAME>
<PRICE>3.00</PRICE></BEER>

</BAR>
<BAR> ...
</BARS>
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Attributes

* Opening tags in XML can have attributes.
* [na DTD,
<!/ATTLISTE...>

declares attributes for element E, along with its datatype.
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. Attributes

* Bars can have an attribute kind, a character string describing the bar.
<!'ELEMENT BAR (NAME BEERY*)>
<!ATTLIST BAR kind |[CDATA

#IMPLIED> '\

\ Character string

Attribute is optional type; no tags

opposite: #REQUIRED
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. Attribute Use

*In a document that allows BAR tags, we might see:

<BAR kind = "“sushi’”>

<NAME>Homma'’ s</NAME>

<BEER><NAME>Sapporo</NAME>
<PRICE>5.00</PRICE></BEER>

</BAR>
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ID’s and IDREF’s

 Attributes can be pointers from one object to another.

* Allows the structure of an XML document to be a general graph,
rather than just a tree.
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Creating ID’s

* Give an element E an attribute A of type ID.

* When using tag <E > in an XML document, give its attribute A a
unique value.

* Example:
<E A = "xyz”">

Database Systems and Concepts, CSCI 3030U,
Course Instructor: Jarek Szlichta

19



Creating IDREF’s

* To allow elements of type F to refer to another element with an ID
attribute, give F an attribute of type IDREF.

* Or, let the attribute have type IDREFS, so the F -element can refer to
any number of other elements.
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. ID’s and IDREF’s

* A new BARS DTD includes both BAR and BEER
subelements.

e BARS and BEERS have ID attributes name.

* BARS have SELLS subelements, consisting of a
number (the price of one beer) and an IDREF
theBeer leading to that beer.

* BEERS have attribute sol1dBy, which is an IDREFS
leading to all the bars that sell it.
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Bar elements have name
The DTD as an ID attribute and
have one or more

<IDOCTYPE BARS [ SELLS subelements.

<lELEMENT BARS (BAR*, BEER*)>
SELLS elements

<!ELEMENT have a number
<IATTLIST B (the price) and

<!ELEMEN LLS (#PCDATA)> one reference
<!ATTE:'FF\SE% theBeer IDREF #REQL;éDgO\abeer'
<!ELEMENT BEER|EMPTY3
<IATTLIST BEER[name ID #REQUIRED>
<IATTLIST BEER|soldBy IDREFS #IMPLIED>
> 1
Explained Beer elements have an ID attribute called hame,
next and a soldBy attribute that is a set of Bar names.

\'4
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Example: A Document

<BARS>

<BAR name = "JoesBar”>
<SELLS theBeer = "Bud”>2.50</SELLS>
<SELLS theBeer = ”"Miller”>3.00</SELLS>

</BAR> ...

<BEER name = "Bud” soldBy = “JoesBar
SuesBar ...” /> ...

</BARS>
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Query Languages for XML

XPath
XQuery



The XPath/XQuery Data Model

Ill

. Corresponding to the fundamental “relation” of the relational

model is: sequence of items.
. An item is either:

1. A primitive value, e.g., integer or string.
2.  Anode (defined next).
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Principal Kinds of Nodes

1.  Document nodes represent entire documents.

2.  Elements are pieces of a document consisting of some opening
tag, its matching closing tag (if any), and everything in between.

3.  Attributes names that are given values inside opening tags.
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DTD for Running Example

<IDOCTYPE BARS |
<IELEMENT BARS (BAR*, BEER*)>
<IELEMENT BAR (PRICE+)>
<IATTLIST BAR name ID #REQUIRED>
<IELEMENT PRICE (#PCDATA)>
<IATTLIST PRICE theBeer IDREF #REQUIRED>
<IELEMENT BEER EMPTY>
<IATTLIST BEER name ID #REQUIRED>
<IATTLIST BEER soldBy IDREFS #IMPLIED>
1>



Example Document

Document node is all of this, plus
5 .
the header ( <? xml version... ). An element node

<BARS> l

4BAR name = “JoesBar”>

<PRICE theBeer = “Bud”>2.50</PRICE>
<PRICE theBeer = "Miller”>3.00</PRICE>
</BAR> ...

<BEER name = "Bud” soldBy = “JoesBar

SuesBar ... " /> ... |
</BARS> An attribute node
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Nodes as Semistructured Data

(%8
---------------
----------------
........................
o

i
.
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.
i
.
i
.
s
.
.

@ theBeer\" @ theBeer =
= "Bud” "Miller” Rose =document

Blue = element

@ @ Gold = attribute

Purple = primitive
value



Paths in XML Documents

» XPath is a language for describing paths in XML documents.
* The result of the described path is a sequence of items.



Path Expressions

» Simple path expressions are sequences of slashes (/) and tags,
starting with /.
: /BARS/BAR/PRICE

e Construct the result by starting with just the doc node and
processing each tag from the left.



Example: /BARS

<BARS>
<BAR name = "“JoesBar”>
<PRICE theBeer = “Bud”>2.50</PRICE>
<PRICE theBeer = "Miller”>3.00</PRICE>
</BAR> ...
<BEER name = "Bud” soldBy = “JoesBar

SuesBar ... " /> ...
</BARS>
\ One item, the
Database Systems and Concepts, CSCI 3030U, BARS element 32
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Example: /BARS/BAR

<BARS>

4BAR name = "JoesBar”>

<PRICE theBeer ="Bud”>2.50</PRICE>
<PRICE theBeer = "Miller”>3.00</PRICE>
</BAR> ...

1
<BEER name ="”Bud” soldBy = {JoesBar

SuesBar ...” /> ...
</BARS>

This BAR element followed by
all the other BAR elements

Database Systems and Concepts, CSCI 3030U,
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. /BARS/BAR/PRICE

<BARS>
<BAR name = "JoesBar”>

<PRICE theBeer ="Bud”>2.50</PRICE>

<PRICE theBeer = "MiNer”>3.00</PRICE>

</BAR> ...
<BEER name = "Bud” soldBy = “JpesBar
SuesBar ...” /> ...

</BARS> by the PRICE elements

of all the other bars.

Database Systems and Concepts, CSCI 3030U,
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Attributes in Paths

* Instead of going to subelements with a given tag, you can go to an
attribute of the elements you already have.

* An attribute is indicated by putting @ in front of its name.



. /BARS/BAR/PRICE/@theBeer

<BARS>
<BAR name = "JoesBar”>
<PRICE theBeer = “Bud”>2.50</PRICE>
<PRICE theBed( = “Miller”$3.00</PRICE>

</BAR> ...
<BEER name = "Bud™\soldBy = “JoesBar

SuesBar ...” /> ... These attributes contribute

</BARS> "Bud” "Miller” to the result,
followed by other theBeer
values.




Paths that Begin Anywhere

* If the path starts from the document node and begins with //X, then
the first step can begin at the root or any subelement of the root, as
long as the tag is X.



. //PRICE

<BARS>
<BAR name = "JoesBar”’>

<PRICE theBeer ="Bud”>2.50</PRICE>

<PRICE theBeer = "MNer">3.00</PR|CE>

</BAR> ...
<BEER name = "Bud” soldBy\= “JoesBar
SuesBar ...” /> ...

</BARS> These PRICE elements and

any other PRICE elements
in the entire document
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Wild-Card *

A star (*) in place of a tag represents any one tag.

. /*/*/PRICE represents all price objects at the third level of
nesting.



Example: /BARS/*

This BAR element, all other BAR
elements, the BEER element, all

<BARS> J other BEER elements
<BAR name = "JoesBar”> |
<PRICE theBeer = “Bud”>2.50</PRICE>
<PRICE theBeer = "Miller”>3J00</PRICE>
</BAR> ...
<BEER name = "Bud” soldBy = “JoesBar
SuesBar ... " /> ...
</BARS>
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Selection Conditions

* A condition inside [...] may follow a tag.

* If so, then only paths that have that tag and also satisfy the condition
are included in the result of a path expression.



: Selection Condition

. /BARS/BAR/PRICE[}Q\E}\Th :
<BARS> e curren

element.

<BAR name = "JoesBar”>

<PRICE theBeer = “Bud”>2.50</PRICE>

<PRICE theBeer = "Miiller”>3.00</PRICE>

</BAR> ...

The condition that the PRICE be
< $2.75 makes this price but not
the Miller price part of the result.



. Attribute in Selection

« /BARS/BAR/PRICE[@theBeer = "Miller”]
<BARS>

<BAR name ="JoesBar”>
<PRICE theBeer = “Bud”>2.50</PRICE>

<PRICE theBeer = "Miller”>3.00</PRICE>

</BAR> ... T
Now, this PRICE element
is selected, along with
any other prices for Miller.



XQuery

e XQuery extends XPath to a query language that has power similar to

SQL.
* Uses the same sequence-of-items data model.

* XQuery is an expression language.
 Similarly to SQL



More About Item Sequences

* XQuery will sometimes form sequences of sequences.
 All sequences are flattened.
:(12()1(34))=(1234).

T

Empty
sequence




FLWR Expressions

2.
3.

One or more for and/or let clauses.
Then an optional where clause.

A return clause.
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Semantics of FLWR Expressions

* Each creates a loop.
produces only a local definition.

At each iteration of the nested loops, if any, evaluate the
clause.

 If the clause returns TRUE, invoke the clause, and
append its value to the output.



: FOR

Our example Expand the en-

closed string by
BARS document replacing variables

and path exps. by
their values.”

for Sbeer in document{”’bars.xml”)
return

<BEERNAME bee@</BEERNAIVIE>

* Sbeer ranges over the name attributes of all beers in
our example document.

* Result is a sequence of BEERNAME elements:
<BEERNAME>Bud</BEERNAME>
<BEERNAME>Miller</BEERNAME> . . .

/BARS/BEER/@name




LET Clauses

let <variable> := <expression>, . ..

 Value of the variable becomes the sequence of items defined by the
expression.

* Note et does not cause iteration; does.
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LET

let Sd := document(”bars.xml”)
let Sbeers := Sd/BARS/BEER/@name

return
<BEERNAMES> {Sbeers} </BEERNAMES>
e Returns one element with all the names of the beers, like:

<BEERNAMES>Bud Miller ...</BEERNAMES>



Order-By Clauses

* FLWR is really FLWOR: an order-by clause can precede the return.

* Form: order by <expression>
* With optional or

* The expression is evaluated for each assignment to variables.

* Determines placement in output sequence.



: Order-By

e List all prices for Bud, lowest first.
let Sd := document(”bars.xml”)
for $p in $d/BARS/BAR/PRICE[@theBeer="Bud”]

order by Sp
" Order those bindings \

t
return >p by the values inside
5 the elements . tes bindi
Each binding is evaluated e i 0
o iy for $p to PRICE
or the output. Ihe elements.

result is a sequence of
PRICE elements.
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: SQL ORDER BY

e SQL works the same way; it’s the result of the FROM and WHERE that
get ordered.

. Using R(a,b), Then, the b-values

SELECT b FROM R are extracted from these

tuples and printed in the

WHERE b > 10
ORDER_BY a:

same order.

R tuples with b>10
\ are ordered by their
a-values.



Predicates

* Normally, conditions imply existential quantification.
: /BARS/BAR[@name] means “all the bars that have a name.”

: /BARS/BEER[@soldAt = “JoesBar”] gives the set of beers that
are sold at Joe’s Bar.



Actions

* Read Chapters 11 about XML DTD and 12 about Xpath and XQuery
* Review slides!



