Effective Keyword Search over (Semi)-Structured Big Data

Mehdi Kargar

School of Computer Science Faculty of Science University of Windsor

How Big is this Big Data?

40 Billion Instagram Photos

300 Hours of Video is uploaded every Minute

4.5 Million Entities 3.1 Billion RDF Triples

1.4 Billion Facebook Users

The Web is Big Data

- 50 Billion Web Pages
 - News
 - Blogs
 - Business
- How can everyone easily access the web?!

The Web is Accessible because of Search Engines

- Web search engines (Google, Bing) index almost the entire Web
- It gives us a **text box** to type whatever we want
- Each answer is a single web-page
 - unstructured data

US p	resident	Google				
AII	News	Images	Videos	Maps	More 👻	Search tools
About	121,000,0	00 results (1.	10 seconds)			

After briefly practicing law in Atlanta, Georgia, he received a **Ph.D**. in political science from Johns Hopkins University in 1886. (Wilson remains the only **U.S. president** to earn a doctorate degree.)

Woodrow Wilson - U.S. Presidents - HISTORY.com www.history.com/topics/us-presidents/woodrow-wilson

What Web Search Engines can't Find!

- Keywords: "Keanu Reeves" "Laurence Fishburne" "Nicole Kidman"
 - Let's search over <u>IMDb</u> dataset
- Google: a list of web pages
- **Expectation**: Have they starred in the same movie?

IMDb: Left Handed Actors - a list by Eblinds

Nov 10, 2011 - Elegant redhead **Nicole Kidman**, known as one of Hollywood's top Australian imports, was ... **Keanu Reeves**, whose first name means "cool breeze over the mountains" in Hawaiian, was born in ... Image of **Laurence Fishburne**.

Outline

- Keyword Search in Big Graphs
 - VLDB'11, ICDE'12, TKDE'14, SIGMOD'14, KAIS'15, ICDE'15, CIKM'16
- Team Formation in Social Networks
 - CIKM'11, ICDMW'11, PKDD'12, SDM'13, WI'14, EDBT'17
- Conclusions

Outline

- Keyword Search in Big Graphs
 - VLDB'11, ICDE'12, TKDE'14, SIGMOD'14, KAIS'15, ICDE'15, CIKM'16
- Team Formation in Social Networks
 - CIKM'11, ICDMW'11, PKDD'12, SDM'13, WI'14, EDBT'17
- Conclusions

(Semi-)Structured vs Unstructured Data

- Structured and semi-structured data has high degree of organization
 - Relational Databases & Social Networks
 - Usually modeled as graphs
- Each answer to a query is a set of pieces
 - A set of connected tuples from different tables
 - A sub-graph of the input graph
- Unstructured data is essentially the opposite!
 A set of documents or web pages
- Each answer to a query is a single document

(semi)-structured data

unstructured data

Graph-like Big Data

- Much of the high quality and valuable big data are stored as semi-structured data (modeled as graphs):
 - Enterprise's Relational Databases
 - Banks, Insurance, ...
 - Social Network's Graph
 - Facebook, LinkedIn, ...
 - XML repositories

facebook.

1.4 Billion Nodes400 Billion Edges

400 Million Nodes 80 Billion Edges

1000s of Relations Millions of Rows

Challenges of Search in Graph-like Databases

- Current enterprise search engines requires:
 - Knowledge of complex schema
 - Knowledge of a query language (SQL,SPARQL)
- A non-technical user does not have this knowledge

SELECT title **FROM** conference c, paper p, author a1, author a2, write w1, write w2 **WHERE** c.cid = p.cid **AND** p.pid = w1.pid AND p.pid = w2.pid **AND** w1.aid = a1.aid **AND** w2.aid = a2.aid AND a1.name = "Jack" **AND** a2.name = "Sarah" **AND** c.name = "VLDB"

Challenges of Search in Graph-like Databases

- What about filling in **forms**?
 - Limited access pattern
 - Hard/Expensive to design
 - Hard to maintain on dynamic and heterogeneous data

<i>e</i> Advar	iced Find - M	licrosoft D	ynamics Cl	RM - Inter	met Explorer				
FILE	ADVAN		licrosoft D	ynamic	s CRM			Mehdi Karg CRMD	j ar 🕜 EV 🛆
Query	Saved Views Show	Results	New	Save	Gave As ☑ Edit Columns ☑ Edit Properties ✓iew	2 Clear	[t≣ Group AND [t≣ Group OR] Details Query	Download Fetch XML Debug	
Look f	or: Conta	acts			V Use Saved Vi	iew: [ne	w]		~
~	First Name	2		Equals	5	Mehd	i		
~	Last Name	2		Equal:	5	<u>Karga</u>	<u>r</u>		
~	Home Pho	one		Equals	5	41673	52100		
	Select								
javascript	;							Mie Dy	crosc nami

Web-like Search for Big Graph Data

- Easy to use
 - Just a text box (keyword search)
- Familiar for anyone who ever has used Google/Bing
- Finding interesting or unexpected discoveries

Keyword Search in Big Graphs

- Given a graph with a set of query keywords, the goal is to find a sub-graph (e.g., tree), covering all of the keywords
- **Content node**: a node that contains an input keyword

Issues of Previous Works

- Weak relationships among content nodes
- **Poor** performance
- **Solution**: Finding *r*-cliques

- **Exponential** number of answers
- Duplicate answers
 - Some answers have exactly the same set of content nodes
 - Need post-processing
- **Solution**: Enumerating answers in polynomial delay

Finding *r*-cliques

- An *r*-clique is a set of content nodes that together:
 - Contain all of the input keywords
 - The shortest distance between each pair of nodes is no longer than *r*.
- A new weight function is proposed based on the sum of distances between each pair of content nodes
 - The goal is to **minimized** the weight function

Very Large Databases (**PVLDB**) Keyword Search in Graphs: Finding *r*-cliques **M. Kargar**, A. An, 2011

Challenges

- Problem:
 - Given a distance threshold *r*, a graph *G* and a set of input keywords, find an *r*-clique in G whose weight is minimum
- We proved that the problem is **NP-hard**
 - By reduction from 3-SAT
- Solution:
 - We proposed an approximation algorithm with guaranteed ratio (2-approximation) for finding *r*-cliques
 - We further proposed a faster approximation algorithm with guaranteed ratio ((t-1)-approximation) for finding *r*-cliques
 - **t** is the number of keywords

Challenges

- Problem:
 - Total number of answers is exponential regarding the number of input keywords
 - We want to produce unique set of content nodes (**duplication free**)
- For big graphs, it is not feasible to generate all answers and then sort them
- Solution:
 - Enumerating top-k answers in polynomial delay
 - Answers are produced in order of their weight

Enumerating Answers in Polynomial Delay

- The **Lawler's** technique is used for finding the **top-k** answers
- In each iteration, the next *r*-clique is generated by finding the top answer under constraints
- The constraints result in duplication free answers

Eugene Lawler Professor of CS at Berkeley

Constraints and Search Space

- Suppose that the **best (top)** answer contains nodes {*a*, *b*, *c*}
 - Best answer is found using **our approximation** algorithm
- Each search space has two constraints
 - 1. Inclusion set
 - 2. Exclusion set
- The sub-spaces are guaranteed to be **disjoint** (duplication free)

Subspace	Inclusion Set	Exclusion Set
SB1	{a, b}	{c}
SB ₂	{a}	{b}
SB ₃	{}	{a}

IEEE Transactions on Knowledge and Data Engineering (**TKDE**) Efficient Duplication Free and Minimal Keyword Search in Graphs **M. Kargar**, A. An, X. Yu, 2014

Overview of the System for Finding top-*k* **Answers**

Outline

- Keyword Search in Big Graphs
 - VLDB'11, ICDE'12, TKDE'14, SIGMOD'14, KAIS'15, ICDE'15, CIKM'16
- Team Formation in Social Networks
 - CIKM'11, ICDMW'11, PKDD'12, SDM'13, WI'14, EDBT'17
- Conclusions

Team Formation in Social Networks

- What does a project need to be successful?
 - Expertise of the people
 - Effective Communication
- Social networks among professionals
 - LinkedIn
 - DBLP
- They form a graph
 - Each node is an expert
 - The edges determine previous collaboration

Our Contribution

Introducing the **cost** of the project

Affordable Team Formation

- Find a team of experts that minimizes:
 - Communication cost
 - Personnel cost
- This is a **bi-objective optimization** problem
- So, how to solve it?!

Solving Bi-Objective Optimization Problems

- 1. **Combining** the two objective functions into a single one
 - Using a trade off parameter λ between the communication and personnel costs

2. Finding a team of experts with a **bounded budget**

3. Finding Pareto-optimal teams

Combining the Two Objective Functions

- λ is the **tradeoff** between the communication and personnel costs
 - CombFunc = (λ) .(ComCostFunc) + $(1-\lambda)$.(PersonCostFunc)
- We proved that optimizing the new function is **NP-hard**
- We proposed:
 - An approximation algorithm with the ratio of 2
 - Two greedy algorithms

European Conference on Knowledge Discovery in Databases (**PKDD**) Efficient Bi-objective Team Formation in Social Networks **M. Kargar**, M. Zihayat, A. An, 2012

Finding Teams of Experts with Bounded Budget

- Give us your **personnel cost budget** (e.g., **\$20K**)
 - We find the most collaborative team within your budget
- We proved the problem is NP-hard
- (α, β) -approximation algorithm is used to solve the problem
 - α is the bound on first objective (personnel cost)
 - β is the bound on second objective (communication cost)
- We propose a (log n, 2)-approximation algorithm
 - *n* is the number of required skills

SIAM International Conference on Data Mining (**SDM**) Finding Affordable and Collaborative Teams from a Network of Experts **M. Kargar**, M. Zihayat, A. An, 2013

Example: Best Team within Budget

- Max Budget: \$300
- Max Budget: \$100
- Max Budget: \$50

Finding Pareto-Optimal Teams

- Pareto-optimal teams are a set of optimal solutions that are not dominated by others
- User is presented with a set of Pareto teams and choose one of them
- We proposed an **approximation algorithm** for finding Pareto teams

Example: Pareto-Optimal Teams

Communication Cost

- Team D: 62
- Team H: **78**

Personnel Cost

- Team D: **\$43**
- Team H: **\$62**

Future Work – Team Formation

- Considering more constraints
 - Expertise of skill holders
- Adding one or more experts to an existing team to increase performance
 - The new member(s) should be able to communicate with existing members
- Due to a cut in the budget, we have to fire some team members
 - Who to fire?
- Assuming that a team lacks a particular skill, which of these approaches are more efficient?
 - Train an existing team member
 - Which one?
 - Hire a new one with the required skill
 - Who to hire?
 - Outsource the project

Outline

- Keyword Search in Big Graphs
 - VLDB'11, ICDE'12, TKDE'14, SIGMOD'14, KAIS'15, ICDE'15, CIKM'16
- Team Formation in Social Networks
 - CIKM'11, ICDMW'11, PKDD'12, SDM'13, WI'14, EDBT'17
- Conclusions

Collaborators

- AT&T Labs Research
 - Divesh Srivastava
- York University
 - Aijun An
 - Parke Godfrey
- University of Waterloo
 - Lukasz Golab
- University of Ontario Institute of Technology
 - Jarek Szlichta
- University of Toronto
 - Morteza Zihayat
- School of Information Technology, York University
 - Xiaohui Yu

Conclusions

- Accessibility of graph-like big data is an important area of research
- We have done some (hopefully) interesting work in this area
 - Keyword Search in Big Graphs
 - Team Formation in Social Networks
- Collaboration in Big Data Analytics related topics is of paramount importance
- A lot more research needs to be done!

Effective Keyword Search over (Semi)-Structured Big Data

mkargar@uwindsor.ca