GRASP: Designing Objects
with Responsibilites

Software Design and Analysis
CSCl 2040

Objectives

Define patterns.
Learn to apply five of the GRASP patterns.

Software Design and Analysis CSCI 2040

Business
Nodeling

Roquire.
mants

nspration o
namas of
e
soltware
SOEnan
abpects

Slanng evems 1
chatign for

taied pose
condton o
sataly

Y

Design I

-~

Comain Mode

Saes
Liro tery

ouantity

Use-Case Model

Proscas Sale

1. Custorer

arives
2

3. Coshier
erters tam

doctifce

Ush Cate Dajam

deas for

the pos!

XNdnons

Oparation - "o

- 3 make
evaeritem(...} .

NewSake|)

>

Pom-wondions
. “ erferiiom

"l q‘..»r:l(‘.l'__ »

Oporation Controcts System Sequence Disgrame

. - Design Model
1 Rogeslor

enjerbemn
1emiD, qrarvity)

LR »
U = SEFToOUCIDESCT OO aD)
sddLneltern(d, quontity)
Rogator
ke NewSs » 1

anlerhamy)

Artifact Relationships

Wokerenay
Spocifioation

N UNCICHE
requiemants

Lnctional
oqUIRMments
hat must be
wealzed by
ha objects

Gossary

itam Setadls
formals
valdaton

>

PoducaCataleg |

QutProd wetDasonpbion(.)

Introduction

Deciding what methods belong where, and
how the objects should interact, is

terribly important and

anything but triviall
It takes careful explanation,

applicable while diagramming and programming.
This is at the heart of what it means to
develop an object-oriented system.

GRASP

The GRASP patterns:
help one understand essential object design, and

apply design reasoning in a methodical, rational,
explainable way.

This approach to using design principles is
based on patterns of assighing responsibilities.

Software Design and Analysis CSCI 2040

Responsibilities

Responsibilities are related to the obligations
of an object in terms of its behavior.
Responsibilities are assigned to classes of
objects during object design.
These responsibilities are of the following two
types:

Knowing

Doing

Doing Responsibilities

Doing responsibilities of an object include:

doing something itself, such as creating an object
or doing a calculation

initiating action in other objects

controlling and coordinating activities in other
objects

Software Design and Analysis CSCI 2040

Knowing Responsibilities

Knowing responsibilities of an object include:
knowing about private encapsulated data
knowing about related objects
knowing about things it can derive or calculate

Software Design and Analysis CSCI 2040

Doing and Knowing Examples

Doing Example

e.g., declare that a Sale is responsible for creating
SaleslLineltems.

Knowing Example

e.g., a Sale is responsible for knowing its total.

Software Design and Analysis CSCI 2040

Methods vs Responsibilities

A responsibility is NOT the same as a
method,

but methods are implemented to fulfill
responsibilities.
Responsibilities are implemented using
methods that either act alone or collaborate
with other methods and objects.

For example, the Sale class might define one or
more methods such as getTotal to know its total

the Sale may collaborate with other objects, such as

sending getSubtotal message to each SalesLineltem
object asking for its subtotal.

Software Design and Analysis CSCI 2040 10

Responsibilities & Sequence Diagrams

Responsibilities and methods are related.

A common context where these responsibilities (implemented as
methods) are considered is during the creation of Sequence
Diagrams

What is the responsibility of Sale objects in the Sequence
Diagram below?

- Sale

I

[

[

|

[

[
makePayment(cashTendered) _L
> create(cashTendered)

p : Payment

11

Responsibilities & Interaction Diagrams

Responsibilities and methods are related.

A common context where these responsibilities (implemented as
methods) are considered is during the creation of interaction
diagrams

w
)
®

|________

makePayment(cashTendered)

» create(cashTendered)

p : Payment

responsibility to create Payments

' T
implies Sale objects have a : :
' |
I
|

12

How to Apply GRASP Patterns

GRASP patterns guide choices in where to

assign responsibilities.

First five GRASP patterns are:

Information Expert
Creator

High Cohesion

Low Coupling
Controller

Software Design and Analysis CSCI 2040

3 g)-i Y0
Desion Patterns
Elements of Reusable
Object-Criented Software

13

A pattern is a named problem/solution pair
that can be applied in new context, with:

advice on how to apply it in new situations
and/or

discussion of its trade-offs.
GRASP patterns describe fundamental
principles of object design and responsibility
assignment, expressed as patterns.

Information Expert Pattern

Solution:
Assign a responsibility to the class that has the
information needed to fulfill it.

Problem it solves:
What is a basic principle by which to assign
responsibilities to objects.

Benefits:

Information encapsulation is maintained.

This usually supports low coupling, which leads to more
robust and maintainable systems.

Software Design and Analysis CSCI 2040 15

Software Classes Methods

ClassName third section is for
methods
attributes
methods O

Software Design and Analysis CSCI 2040 16

Associations of POS System

Sale
date
time
1
Contains
1.7
Product
Sales " 1 Specification
Lineltem Described-by
description
quantity price
itemID

Software Design and Analysis CSCI 2040 17

Associations of POS System

Sale
date
time
1
Contains
1.%
Product
Sales " 1 Specification
Lineltem Described-by
description
quantity price
itemID

What are the potential responsibilities of Sale,
SalesLineltem and Product Specification objects?

Software Design and Analysis CSCI 2040 18

Partial Sequence and Class Diagrams

t .= getTotal()

—

New method

Software Design and Analysis CSCI 2040

O

Sale

date
time

getTotal()

19

Class Responsibilities

Design Class Responsibility
Sale knows sale total
SalesLineltem knows line item subtotal
ProductSpecification knows product price

Software Design and Analysis CSCI 2040 20

Calculating Sale Total

—

t .= getTotal()

*. st ;= getSubtotal()

— I

:SalesLineltem

1.1: p ;= getPrice()

‘Product
Specification

New method 7

Software Design and Analysis CSCI 2040

(@]

Sale

date
time

getTotal()

SalesLineltem

quantity

getSubtotal()

Product
Specification

description
price
itemID

getPrice()

21

Applying Expert to Monopoly

(')Qc (d\ L

\)&
\ — L‘\Da',}\ "————\
—_—— N 1\3 2\ |

\

Software Design and Analysis CSCI 2040 2

Solution:

Assign class B the responsibility to create an
instance of class A if one or more of the following
Is true:

B aggregates A objects.

B contains A objects.

B closely uses A objects.

B has the initializing data that will be passed to A when
it is created.

Problem it solves:

Who should be responsible for creating a new
instance of some class?

Software Design and Analysis CSCI 2040 23

Partial Domain Model

Who should create a SalesLineltem instance?

Sale
date
time
1
Contains
1 *
Product
Sales N 1 Specification
Lineltem Described-by
description
quantity price
itemID

Software Design and Analysis CSCI 2040 2

Creating Sales Line Item

Sales should create, since it contains
(aggregates) many SalesLineltem objects.

>

: Register Sale
T [
| |
| |
0 l
|
makeLineltem(quantity) > !
create(quantity)
H
|
T |
|

Software Design and Analysis CSCI 2040

: SalesLineltem

25

Monopoly Game (Creator)

‘Boo\f& a Square
. \NS nema

Software Design and Analysis CSCI 2040 %

Low Coupling

Coupling is a measure of how strongly one
element is connected to or relies on other
elements.
Solution:
Assign a responsibility so that coupling remains
low.
Problem it solves:

How to support low dependency, low change
impact, and increased reuse?

Software Design and Analysis CSCI 2040 27

NextGen Case Study

| Payment { Register ‘ [Sale i

Software Design and Analysis CSCI 2040

Register Creates Payment

Register creates and sends payment object p.
This assignment of responsibilities couples
the Register class to knowledge of the
Payment class.

—>
makePayment()

1: create(—= b - Payment

. Register

2: addPayment(p) —

Register Creates Payment

Register creates and sends payment object p.
This assignment of responsibilities couples
the Register class to knowledge of the
Payment class.

Is it a good design in terms of coupling?

—>
makePayment()

1: create()—> p : Payment

: Register

2: addPayment(p) —

Software Design and Analysis CSCI 2040 30

Sales Creates Payment

An alternative solution to creating the
Payment and associating it with the Sale is:

—> —>

makePayment() - Reqister 1: makePayment()

Sale

1.1. create()

:Payment

Which design is better?

Sales Creates Payment

—> —
makePayment() 1: makePayment()

: Register Sale
1.1. create()
:Payment

Design Two is preferable because overall
lower coupling is maintained, i.e., no
coupling from Register to Payment.

Software Design and Analysis CSCI 2040 32

Coupling in Monopoly
_'3] (’m.. o | M.,(S\.ﬂ

.};,\ _1;» reloame) ‘ I
,icﬁ : \GaA\LS\}o\(u

‘ gz ok (name): ScL are "

Ty '

\ , .
S B |
<Q:\3d’\j‘g) a _ ,| R l p;au & \ | { SqluuL \

pnt® . Iyt
,‘ ,EJA\L S\)u " r \N(

* Hi&o\\w(mcd covg\‘-a}) W ﬂbot hes f(\)djt\'j"e '

The design with Board having getSquare
method has lower coupling

Software Design and Analysis CSCI 2040

33

High Cohesion

Cohesion is a measure of how strongly related the
responsibilities of an element are.

An element with highly related responsibilities has
high cohesion.

Solution:

Assign a responsibility so that cohesion remains
high.
Problem it solves:

How to keep complexity manageable?

Software Design and Analysis CSCI 2040 34

Register Creates Payment

: Register : Sale

|
|
makePayment() >_}_

create()

| p : Payment

addPayment(p)

Is it a good design in terms of high cohesion?

Software Design and Analysis CSCI 2040 35

Sale Creates Payment

The second design delegates the payment
creation responsibility to the Sale, which
supports higher cohesion.

. Register : Sale

I
I
I
I

makePayment()

makePayment()

[create() > : Payment

Monopoly Cohesion

e
Lﬂwapo\-b&..*j mefo\-tl&nc)] T4
|& Ccmq { Lo Gewm E '
£ }} i doA . - L,dQP‘ —
\ \
dof
do . |
dol | ‘.
] |
?o-r (LOW) Contsion BQ_ﬁQ(

T *\Q. Men 090\\3 Gn-.e ésh@d

Software Design and Analysis CSCI 2040

37

Controller

A Controller is a non-user interface object
responsible for receiving or handling a system
event.
Solution:

Assign the responsibility for receiving or handling a

system event message for an object(s) that
delegate it.

Problem it solves:

Who should be responsible for handling an input
system event?

Software Design and Analysis CSCI 2040 38

System Operations Associated

with System Events

System

endSale()
enterltem()
makeNewSale()
makePayment()

Software Design and Analysis CSCI 2040 39

Controller for enterltem?

Who should be the controller for system
events such as enterltem and endSale

The FOO Stoee O] x|
tam 1D
Ouantity
presses button
'“ > Enter Riem And soon...
: Cashier
¢ actionPerformed(actionEvent)
Interface :SaleJFrame
Layer
system event message ﬁ
l enterltem(itemID, qty)
. Which class of object should be responsible for receiving this k
Domain PN system event message?
Layer - 0

'

It is sometimes called the controller or coordinator. It does not
normally do the work, but delegates it to other objects.

The controller is a kind of "facade" onto the domain layer from

the interface layer.

40

Controller Choices

Normally, a controller should delegate to
other objects the work that needs to be done;

it coordinates or controls the activity. It does not
do much work itself.

—
enterltem(id, quantity)

:Register

—
enterltem(id, quantity)

‘ProcessSaleHandler

Software Design and Analysis CSCI 2040 a

Allocation of System Operations

System Register
endSale()
enterltem() »
makeNewSale() endSale()
makePayment() enterltem()
makeNewSale()
makeNewReturn() makePayment()
enterReturnltem()
makeNewReturn()
enterReturnltem()

system operations allocation of system
discovered during system operations during design,
behavior analysis using one facade controller
ProcessSale HandleReturns
System Handler Handler
endSale()
enterltem() e
makeNewSale() endSale() enterReturnitem()
makePayment() enterltem() makeNewReturn()
makeNewSale()
enterReturnitem() makePayment()
makeNewReturn()
allocation of system
operations during design,
using several use case
controllers

42

Bloated Controllers

Poorly designed, a controller class will have
low cohesion

There is only a single controller class receiving all
system events in a complex system.

The controller itself performs many of the tasks
necessary to fulfill the system event without
delegating the work.

A controller has many attributes, and maintains
significant information about the system, which
should have been distributed to other objects.

Software Design and Analysis CSCI 2040 43

Allocation of System Operations

Which
design is
more
recommend
ed in this
case?

System

endSale()
enterltem() O
makeNewSale()
makePayment()

makeNewReturn()
enterReturnltem()

system operations
discovered during system
behavior analysis

Register

endSale()
enterltem()
makeNewSale()
makePayment()

makeNewRetumn()
enterReturnltem()

allocation of system
operations during design,
using one facade controller

System

endSale()
enterltem() _— >
makeNewSale()
makePayment()

enterReturnltem()
makeNewReturn()

Software Design and Analysis CSCI 2040

ProcessSale HandleReturns
Handler Handler
endSale() enterReturnitem()
enterltem() makeNewReturn()
makeNewSale()
makePayment()

allocation of system
operations during design,
using several use case
controllers

44

Allocation of System Operations

System

endSale()
enterltem() O

1 keNewSal
29 design e

makeNewReturn()

h a S h ig h e r éhferReturnltem()
cohesion.

system operations
discovered during system
behavior analysis

Register

endSale()
enterltem()
makeNewSale()
makePayment()

makeNewRetumn()
enterReturnltem()

allocation of system
operations during design,
using one facade controller

System

endSale()

enterltem() _— >
makeNewSale()
makePayment()

enterReturnltem()
makeNewReturn()

Software Design and Analysis CSCI 2040

ProcessSale HandleReturns
Handler Handler
endSale() enterReturnitem()
enterltem() makeNewReturn()
makeNewSale()
makePayment()

allocation of system
operations during design,
using several use case
controllers

45

Coupling of Interface to Domain Layer

I he FOO Shoe

- Enter Bem

Andsoon...

actionPerformed(actionEvent)

'

Interface Layer

system event message ﬁ

1: enterltem(itemID, qty# o’

H

controller

.
.
N
o
....
.
P
P
P

Domain Layer

1.1: makeLineltem(itemID, qty)

Sale

Software Design and Analysis CSCI 2040

46

Less Desirable Coupling

presses button
———--—* Lidse Paemn Anisp s, .

Cashier

actionPerformed(actionEvent)

| A

It iIs undesirable for an interface
layer object such as a window to get

Interface Layer -SaleJFrame involved in deciding how to handle
domain processes.

Business logic is embedded in the
presentation layer, which is not useful.

b

1: makeLineltem(itemID, qty)

Domain Layer

P

SaleJFrame should not
send this message.

Software Design and Analysis CSCI 2040 47

Monopoly Controller

Software Design and Analysis CSCI 2040 48

Monopoly Controller?

:Obsecver d_""&\‘!!_:&ﬂ. ‘ \
A 8 qﬂ.p. icdk : g\oq%l\s) Cb“*“ er
&3‘& N S""""b jh&“‘\‘ ' . —"

Wi dow mn

Software Design and Analysis CSCI 2040 49

nat are the two types of responsibilities?
nat is GRASP?

nat are the five basic types of patterns?
nat is the problem and solution for
controller pattern?

S ===

Review Slides.
Read Chapter 16 and 17

Applying UML and Patterns, Craig Larman

Software Design and Analysis CSCI 4030 51

