
Software Design and Analysis 
CSCI 2040



2

¡ Introduce two important development 
practices in the context of the case studies:
§ Test-Driven Development (TDD)
§ Refactoring 

Software Design and Analysis CSCI 2040



3

¡ Extreme Programming (XP) promoted an 
important testing practice: writing the tests 
first.

¡ It also promoted continuously refactoring 
code to improve its 
§ qualityless duplication, 
§ increased clarity, and so forth.

¡ Modern tools support both practices, 
§ and many OO developers swear by their value.

Software Design and Analysis CSCI 2040



4

¡ In OO unit testing TDD-style, test code is 
written before the class to be tested, 
§ and the developer writes unit testing code for 

nearly all production code.
¡ The basic rhythm is to write a little test code, 

then write a little production code, 
§ make it pass the test, 
§ then write some more test code, and so forth.

¡ Key Point: The test is written first, imagining 
the code to be tested is written.

Software Design and Analysis CSCI 2040



5Software Design and Analysis CSCI 2040



6

¡ The unit tests actually get written..
¡ Programmer satisfaction leading to more 

consistent test writing.
¡ Clarification of detailed interface and 

behavior
¡ Provable, repeatable, automated verification
¡ The confidence to change things..

Software Design and Analysis CSCI 2040



7

¡ The most popular unit testing framework is the 
xUnit family (for many languages), available at 
www.xunit.org.

¡ For Java, the popular version is JUnit. There's 
also an NUnit for .NET, and so forth. 
§ JUnit is integrated into most of the popular Java IDEs, 

such as Eclipse.
¡ The xUnit family, and JUnit, was started by Kent 

Beck (creator of XP) and Eric Gamma (one of the 
Gang-of-Four design pattern authors, and the 
chief architect of the popular Eclipse IDE).

Software Design and Analysis CSCI 2040

http://www.xunit.org/


8Software Design and Analysis CSCI 2040



9

¡ Suppose we are using JUnit and TDD to create 
the Sale class. 

¡ Before programming the Sale class, we write a 
unit testing method in a SaleTest class that does 
the following:
1. Create a Sale the thing to be tested (also known as 

the fixture).
2. Add some line items to it with the makeLineItem 

method (the makeLineItem method is the public 
method we wish to test).

3. Ask for the total, and verify that it is the expected 
value, using the assertTrue method. JUnit will 
indicate a failure if any assertTrue statement does 
not evaluate to true.

Software Design and Analysis CSCI 2040



10

¡ Each testing method follows this pattern:
1. Create the fixture.
2. Do something to it (some operation that you 

want to test).
3. Evaluate that the results are as expected.

Software Design and Analysis CSCI 2040



11Software Design and Analysis CSCI 2040



12Software Design and Analysis CSCI 2040



13

¡ Only after this testMakeLineItem test method is 
written do we then write the Sale.makeLineItem 
method to pass this test. 
§ Hence, the term test-driven or test-first development.

Software Design and Analysis CSCI 2040



14Software Design and Analysis CSCI 2040



15

¡ Refactoring is a method to rewrite or restructure 
existing code without changing its external 
behavior, 
§ applying small transformation steps combined with re-

executing tests each step.
¡ Continuously refactoring code is another XP 

practice and applicable to all iterative methods 
(including the UP).
§ Ralph Johnson (one of the Gang-of-Four design 

pattern authors) and Bill Opdyke first discussed 
refactoring in 1990. 

§ Beck (XP creator), along with Martin Fowler, are two 
other refactoring pioneers.

Software Design and Analysis CSCI 2040



16

§ remove duplicate code
§ improve clarity
§ make long methods shorter
§ remove the use of hard-coded literal constants

Software Design and Analysis CSCI 2040



17

¡ Code that's been well-refactored is short, tight, 
clear, and without duplication 
§ it looks like the work of a master programmer..

¡ Code that doesn't have these qualities smells bad 
or has code smells.

¡ Code smells is a metaphor in refactoring, they 
are hints that something may be wrong in the 
code.
§ It might turn out to be alright and not need 

improvement.
§ Code stench truly putrid code crying out for clean up!

Software Design and Analysis CSCI 2040



18

¡ Here's a sample to get a sense of them:

Software Design and Analysis CSCI 2040



19Software Design and Analysis CSCI 2040



20Software Design and Analysis CSCI 2040



21Software Design and Analysis CSCI 2040



22Software Design and Analysis CSCI 2040



23Software Design and Analysis CSCI 2040



24Software Design and Analysis CSCI 2040



25

¡ For TDD on the Web:
§ www.junit.org
§ www.testdriven.com

¡ For refactoring on the Web:
§ www.refactoring.com
§ www.c2.com/cgi/wiki?WhatIsRefactoring
(a major Wiki on many subjects)

Software Design and Analysis CSCI 2040

http://www.junit.org/
http://www.testdriven.com/
http://www.refactoring.com/
http://www.c2.com/cgi/wiki?WhatIsRefactoring


26

¡ Describe test-driven development in XP.
¡ What does the metaphor “code smells” 

stands for?
¡ What are the example refactorings? Provide a 

description for each of them.
¡ Does the IDE support for refactoring?

Software Design and Analysis CSCI 2040



27

¡ Review Slides.
¡ Read Chapter 21 (3rd edition)
§ Test-Driven Development and Refactoring, 

Applying UML and Patterns, Craig Larman

Software Design and Analysis CSCI 2040


