Iterative, Evolutionary and
Agile

Software Design and Analysis
CSCl 2040

Objectives

Define an iterative process.

Introduce fundamental concepts in the unified
process (UP).

Define agile process.
Compare waterfall vs iterative process.

Software Design and Analysis CSCI 2040

Intro

Agile flexible modelling practices are key to
applying the UML in an effective way.
Iterative and evolutionary development
contrasts with a "waterfall " (sequential)

Early programming and testing of a partial system,
in repeating cycles.

Feedback is used to clarify and improve the
evolving specifications.
The unified process is a relatively popular
sample iterative method.

Software Design and Analysis CSCI 2040

Waterfall (Sequential)

Software Design and Analysis CSCI 2040

Waterfall Failure

Success/failure studies show that the
waterfall is strongly associated with the
highest failure rates for software projects.
Historically promoted due to belief or hearsay
rather than statistically significant evidence..
Research (e.g., IBM TJ Watson Research
Center) demonstrates that iterative methods
are associated

with much higher success and productivity rates,
and

lower defect levels.

Software Design and Analysis CSCI 2040

Percentage of Requirements Changes

w
o

no
o,

Requirements change
— N
o, o

—-
o
A

(&)
i

o

10 100 1000 10000
Project Size in Function Points

Software Design and Analysis CSCI 2040

Iterative Development

“You should use iterative development only on
projects that you want to succeed..”

Martin Fowler

https://www.martinfowler.com/

Author of the book 'Refactoring: Improving the
Design of Existing Code’,

Software Design and Analysis CSCI 2040

https://www.martinfowler.com/

Unified Process (UP)

What is Unified Process?

The unified process has emerged as a popular
iterative software development process for
building object-oriented systems.

Since the unified process is common and
promotes widely recognized best practices, it
is useful for industry professionals to know it..

and students entering the workforce to be aware
of it...

UP Characteristics

Iterative and Incremental - phases are divided into
a series of timeboxed iterations.

Architecture Centric - insists that architecture is at
the heart of the project team's efforts to shape the
system.

Risk Focused - requires the project team to focus
on addressing the most critical risks early in the

project life cycle.

Software Design and Analysis CSCI 2040 10

Are Other Methods Complementary?

The UP is very flexible and open
It encourages including skillful practices from
other iterative methods, such as from
Extreme Programming (XP),
Scrum, and so forth.

Software Design and Analysis CSCI 2040 11

What i1s Extreme Programming?

Software Design and Analysis CSCI 2040

Extreme Programming — Programming in Pairs

Software Design and Analysis CSCI 2040 13

Extreme Programming

WE'RE GOING TO TRY
SOMETHING CALLED
EXTREME PROGRAM
MING.

Copyright 39 28683 United Feature

FIRST, PICK A
PARTNER. THE TWO
OF YOU WILL WORK
AT ONE COMPUTER
FCR FORTY HOURS
A WEEK.

scottadama® acl.com

-

(O (_, \;‘-" Y.

www.dilbert.com

/9fe3 © 2002 United Feature Syndicate, Inc

THE NEW SYSTEM IS
A MINUTE OLD AND
I ALREADY HATE
EVERYONE.

Syndicate, |nc.

Software Design and Analysis CSCI 2040

14

Scrum -War Rooms

Software Design and Analysis CSCI 2040 15

Iterative and Evolutionary Development

A key practice in both the UP and most other
modern methods is iterative development.
Development is organized into a series of
short, fixed-length (for example, three-week)
mini-projects called iterations.

The outcome of each is a tested, integrated, and
executable partial system.

Each iteration includes its own requirements

analysis, design, implementation, and testing
activities.

Software Design and Analysis CSCI 2040 16

Iterative and Evolutionary Development

Requirements Requirements) Feedback from
O iteration N leads to
Design > Design o refinement and
Time adaptation of the
Implementation & > Implementation & requirements and
Test & Integration Test & Integration design in iteration
& More Design & More Design L{ N+1.
Final Integration Final Integration
& System Test I/!, ‘ & System Test /-Y-\
R 4 (.!
O '3
~ ~ ~/ ' _/ ©
Y Y,
V4
4 weeks (for examﬁe) 5
Iterations are fixed in The system grows
length, or timeboxed. L_| incrementally.

Software Design and Analysis CSCI 2040 17

Desired System

The result of each iteration is an executable
but incomplete system.

The system may not be eligible for production
deployment until after many iterations, e.g., 10, 15

or 20 iterations.
Iterative feedback and evolution leads
eventually towards the desired system (not
prototypel!).
The requirements and design instability
lowers over time.

Software Design and Analysis CSCI 2040 18

Iterative and Incremental Development

Early iterations are farther from the "true k
path" of the system. Via feedback and
adaptation, the system converges towards
the most appropriate requirements and
design.

In late iterations, a significant change in
requirements is rare, but can occur. Such
late changes may give an organization a
competitive business advantage.

/o

one iteration of design,
implement, integrate, and test

Software Design and Analysis CSCI 2040 19

Systems Change over Time

The Office (U.S.)

20052011 8 Seasons

This hit comedy chronicles the foibles of
disgruntled office workers - led by deluded boss
Michael Scott - at the Dunder Mifflin paper
company. More Info

Starring: Steve Carell, John Krasinski
Creators: Greg Daniels, Ricky Gervais
IMDB Rating: 8.8 /10

Based on your interest in: Scrubs, Arrested Development

e e B
and Slumdog Millionaire

Peter's rating:
Not Interested + Instant Queue
.‘v -

TINTIN

Software Design and Analysis CSCI 2040

20

Benefits to Iterative Development

Less project failure, better productivity, and
lower defect rates.

Ear
Ear
Ear

y rather than late mitigation of high risks
y visible progress
y feedback and user engagement

leading to a refined system that more closely
meets the real needs of the stakeholders

Managed complexity;

the team is not overwhelmed by "analysis
paralysis" or very long and complex steps

Software Design and Analysis CSCI 2040 2

Evolutionary Analysis and Majority in Early Iterations

1 2 3 4 L) 20
\ i
5\ .
N\ - - =
N\ L PoEE oy
\ FOQUIEBMANTS WOrKShops -
N\ e
\ -
Imagine this wil \ T

I

yltimately be a 20
terabion project L] © {' @
X - o~
£ = 2’ =
- s & -
.-) L ..-1 w
& o
ol =
= s
90% BO%
50%
30% .
20% . , arh
28 5% 6% 10%
Itoration 1 Itoration 2 Haration 3 Ileration 4 teration §
R Ty —c T
’ a J-week ferabon - -
’ a -
’ o LS
’ -
7’ e 222
7 week 1 week 2 woek 3 A
, -
M T W Th E X} T W Th £ M T W Th £
e o @ . " . -
kickol! meetng team agile start do final check-i demo and naxt
clarifying iteratior moedaling & coding & fleration and coce- 2-cay RHESTON
goals with the team. design lesting goals if freaze for the requirements planning
1 hour UML 100 much leration workshop mesting
whiteboard work bascline 2 hours

skelching
5 hours Most OOAD and k
applying UML during
this penod

Software Design and Analysis CSCI 2040

Use-case modeling k
during the workshop

22

Timeboxed Iterations

A key idea is that iterations are timeboxed, or
fixed in length.

For example, if the next iteration is chosen to be
three weeks long, then the partial system must be
integrated, tested, and stabilized by the scheduled

date.
Date slippage is illegal.
Otherwise remove tasks or requirements from
the iteration, and include them in a future
iteration, rather than slip the completion
date.

Software Design and Analysis CSCI 2040 23

Agile

Agile Methods and Attitudes

Agile development methods usually

apply timeboxed iterative and evolutionary
development,

employ adaptive planning,
promote incremental delivery

and include other values and practices that
encourage agility, rapid and flexible response to
change.

Software Design and Analysis CSCI 2040 25

Agile Methods and Attitudes

It is not possible to exactly define agile
methods, as specific practices vary widely.
They promote practices and principles that
reflect an agile sensibility of simplicity,
lightness, communication, self-organizing
teams, and more..

e.g., just draw UML diagrams on the board.

Adhoc UML Diagrams

o o ; 4 €
o\ froCess 08 ‘

SCC! wo (o

, >] De.C.0
séadtoc DD [M Qi‘,qstg\n\ ‘ ‘ E o ,/Ji'c_':- .

| B :
_ Resohe (P K - _ Pesolue(FS Apectld)
B 2= Muv.:(,vfff)ﬂ(soﬁg/ ") |
REL Pewwnle(statesC]) ——
P .
cp i (7S objpctld) |
- . % Pn'pu_ () = -
pep. prenu (shatn[J) oflelPreppiePee () :
. ’ . refunl:s Prepace Pos€ (Y —]
& - — — S —— — ————————————————————
pRevase e (FS objectl)
— — > peeraee. r2(*)
5 4 ﬂz\’_vs[) = i =3
‘J \
\ Resymc (FS dnedd .
' ume (FS diect(3) =3 eesove(") ->
= _ stahal) . i NOR—
l
l Stop (
‘ op {) . stopld
‘ SO | = et p. L) S D 1

Software Design and Analysis CSCI 2040

27

Agile Methods and Attitudes

Example agile practices from the Scrum
method include

a common project workroom and

self-organizing teams that coordinate through a

daily stand-up meeting with four special questions
each member answers.

Example practices from the Extreme
Programming (XP) method include

programming in pairs and
test-driven development.

Software Design and Analysis CSCI 2040 78

Agile Principles

www.agilealliance.com

https://www.agilealliance.org/agile101/12-
principles-behind-the-agile-manifesto/

Software Design and Analysis CSCI 2040 29

Agile UP

What is an Agile UP?

The UP was NOT meant by its creators to be
heavy or un-agile

It was meant to be adopted and applied in the
spirit of adaptability and lightnessan agile UP.
Prefer a small set of activities and artifacts.
A series of iterations, based on feedback.
Apply the UML with agile modeling practices.

There is not a detailed plan for the entire project.

UP Phases

Inception approximate vision, business case,
scope, vague estimates.

Elaboration refined vision, iterative
implementation of the core architecture,
resolution of high risks, identification of
most requirements and scope, more realistic
estimates.

Construction iterative implementation of the
remaining lower risk and easier elements,
and preparation for deployment.

Transition beta tests, deployment.

Software Design and Analysis CSCI 2040 32

UP Phases Diagram

development cycle
A

An iteration end-
point when some
significant decision
or evaluation
occurs.

A stable executable
subset of the final
product. The end of
each iteration is a
minor release.

Software Design and Analysis CSCI 2040

The difference
(delta) between the
releases of 2
subsequent
iterations.

iteration phase
AL AL
(\ Ve N
inc. elaboration conlstruction trangition
A A A
milestone release increment final production
release

At this point, the
system is released
for production use.

33

Main UP Disciplines

Requirements

The Use-Case Model and Supplementary
Specification artifacts to capture functional and
non-functional requirements.

Business Modeling
The Domain Model artifact, to visualize
noteworthy concepts in the application domain.
Design
The Design Model artifact, to design the software
objects.

Software Design and Analysis CSCI 2040 34

Disciplines and Phases

During one iteration work goes on in most or
all disciplines.

However, the relative effort across these
disciplines changes over time.

Early iterations naturally tend to apply greater
relative emphasis to requirements and design,
and later ones less so.

This is because the requirements and core design
stabilize through a process of feedback and

adaptation.

Software Design and Analysis CSCI 2040 35

Disciplines and Phases

Sample
UP Disciplines

Business Modeling
Requirements
Design
Implementation
Test

Deployment

Configuration & Change
Management

Project Management

Environment

A four-week iteration (for example).
A mini-project that includes work in most
disciplines, ending in a stable executable.

Note that
although an
iteration includes
work in most
disciplines, the
relative effort and
emphasis change
over time.

This example is
suggestive, not
literal.

A
Ve N
1
..... e B

Iterations

Software Design and Analysis CSCI 2040

36

How to Customize Unified Process

Are There Optional Artifacts or Practices in
the UP?

Yes! Almost everything is optional.

Some UP practices and principles are invariant,
such as

iterative development,

risk-driven development,

continuous verification of quality.

Software Design and Analysis CSCI 2040 37

Sample Case of UP Artifacts

Discipline Artifact Incep. | Elab. | Const. | Trans.
Iteration-* 11 EL .En [CL.Cn | T1 T2
Business Modeling |Domain Model S
Requirements Use-Case Model S I
Vision S I
Supplementary Specification S I
Glossary S I
Design Design Model S r
SW Architecture Document S
Data Model S r
Implementation Implementation Model S I I
Project Management [SW Development Plan S r T r
Testing Test Model S I
Environment Development Case S I

Software Design and Analysis CSCI 2040

38

What is the difference between waterfall
methodology and iterative process?

Which one and why would you recommend to use
in the complex project?
What is unified process?
What is an example of Extreme Programming
and Scrum, respectively?
What are the main UP disciplines? Does the
emphasis on disciplines change over time?
Is UP customizable? What are the invariants

of UP?

Review Slides.
Read about agile at www.agilealliance.com

Read Chapter 2 (lterative Development and
The Unified Process)

Applying UML and Patterns, Craig Larman
Optional

Steve Jobs' Stanford Commencement Speech
https://www.youtube.com/watch?v=UF8uR6Z6KLc

Software Design and Analysis CSCI 2040 0

http://www.agilealliance.com/

