Interaction Diagrams

Software Design and Analysis
CSCl 2040

Objectives

Read basic UML interaction
Sequence diagram notation

Collaboration diagram notation

Software Design and Analysis CSCI 2040

Introduction

The UML includes interaction diagrams to
illustrate how objects interact via messages.
The term interaction diagram, is a
generalization of two more specialized UML
diagram types;

collaboration diagrams

sequence diagrams

Both can be used to express similar message
interactions.

Each type has strengths and weaknesses.
Interaction Diagrams represent dynamic view.
Most Interaction Diagrams are created during

Elaboration phase.

They are not usually motivated in inception.

Software Design and Analysis CSCI 2040

Motivation: Why Draw an SSD?

Useful question in software design is: What
events are coming in to our system? Why?

Because we have to design the software to handle
these events (from the mouse, keyboard, another

system,) and execute a response.
Software system reacts to three things:

1) external events from actors (humans or
computers),

2) timer events, and
3) faults or exceptions

Software Design and Analysis CSCI 2040

Collaboration Diagram

Collaboration diagrams illustrate object
interactions in a graph,

in which objects can be placed anywhere on the diagram.
They are space efficient.

messagel() — ClassAlnstance

1: message?ﬂl
2. messageSDl

‘ClassBlnstance

Software Design and Analysis CSCI 2040

Sequence Diagram

Most prefer sequence diagrams as they
clearly illustrate the sequence of messages.

ClassAlnstance ClassBlInstance

|
messagel > :

|
|
I
|
messageZ(:

message3() |

Software Design and Analysis CSCI 2040

Make Payment Collaboration Diagram

The message makePayment is sent to an instance of a
Register.

The Register instance sends the makePayment message
to a Sale instance.

The Sale instance creates an instance of a Payment.

direction of rr-esagej irst intemal message ‘|

rmake PaymentzashTendered) O, [Register 1:makeP;,-1Tem(aashTendered)_, Sale
O O O s
O
link line 1.1:creaeicashTendered) l
first messageT paameter k‘ :Payment

cregtion indicaed with a
insance T "create” message

Software Design and Analysis CSCI 2040

Make Payment Sequence Diagram

The sequence diagram has the same intent as

the prior collaboration diagram.

: Register

makePayment(cashTendered)

»

makePayment(cashTendered)

1
|
|
|
|
|
|
>

implies Sale objects have a
responsibility to create Payments

Software Design and Analysis CSCI 2040

create(cashTendered)

: Payment

- ———————————

Related Code

What might be some related code for the Sale
class and its makePayment method?

public class Sale
{
private Payment payment;

public void makePayment (Money cashTendered)
{
payment = new Payment(cashTendered);
//-.
}
/] -
}

Software Design and Analysis CSCI 2040 10

Interaction Diagrams are Valuable

Common starting point for inspiration during
programming.

Create interaction diagrams in pairs, not
alone.

The collaborative design will be improved, and the
partners will learn quickly from each other.

Patterns can be applied to improve the quality
of the design.

lllustrating Classes and Instances

The UML has adopted a simple and consistent
approach to illustrate instances vs. classes.
An instance uses the same graphic symbol as

the type, but the desighator string is
underlined.

Sale Sale s1: Sale

0.
class H instance H named instance H

Basic Message Expression Syntax

The UML has a standard syntax for message
expressions:

return := message(parameter : parameterType) :
returnType

Type information may be excluded if obvious
or unimportant. For example:

spec := getProductSpect(id)

spec := getProductSpect(id:ItemlID)

spec := getProductSpect(id:ItemID) ProductSpecification

Software Design and Analysis CSCI 2040 13

Collaboration Diagram
Notation

Basic Collaboration Notation

A link is a connection path between two
objects.

Link represents an association.

1: makePayment(cashTendered) —»

2:foo() —»
: Register - Sale
2.1: bar()
-—

link line H

Software Design and Analysis CSCI 2040 15

Messages

Each message between objects is represented with a
message expression and small arrow indicating the
direction of the message.

Note that multiple messages can flow.

A sequence number is added to show the sequential order of
messages in the current thread of control.

msg1() L 1: msg2() o
2: msg3() —
3: msg4() —>
. Reqister Sale
<— 3.1: msg5()

O

all messages flow on the same link H

Software Design and Analysis CSCI 2040 16

Messages to Self or This

A message can be sent from an object to
itself.

msg1() i

: Register

1: clear() T

Software Design and Analysis CSCI 2040

Instance Creation (Constructors)

create message, with optional initializing parameters. This will
normally be interpreted as a constructor call.

)

1: create(cashier) —»

: Register :Sale {new}
«create»
1: make(cashier)
: Register S Sale {new}

if an unobvious creation message name is used, the
message may be stereotyped for clarity

Furthermore, the UML property {new} may
optionally be added to the instance box to
highlight the creation.

Software Design and Analysis CSCI 2040 18

Message Number Sequencing

The order of messages is illustrated with
sequence numbers

msgi1()—»

O

not numbered ﬁ

1: msg2() —

:ClassA

Software Design and Analysis CSCI 2040

legal numbering ﬁ |

:ClassB

o 1.1: msg3() l

:ClassC

19

Complex Sequence Numbering

first H second H
third H
O

0
msgi()—> :ClassA 1: msg2() —> :ClassB
)y
1.1: msg3()
2.1: msg5() T
Q
2: msgd() —> :ClassC

b}

')

C

fourth H fifth
o 2.2 m1g6()

sixth H
:ClassD

Software Design and Analysis CSCI 2040

20

Conditional Messages

The message is only sent if the clause
evaluates to true.

conditional message, with test ﬂ

message1() l
—>

1[color=red]: calculate
: Foo [] 0 - Ba

-

Software Design and Analysis CSCI 2040 2

Mutually Exclusive Messages

The example illustrates the sequence numbers with
mutually exclusive conditional paths.

In this case it is necessary to modify the sequence expressions with a
conditional path letter.

unconditional after
either msg2 or msg4 -ClassE 1a and 1b are mutually 7
S

exclusive conditional path

© 2: msgb() ?
O
—> 1a [test1] : msg2() .
—msgil() | :ClassA :ClassB
1b [not test1] : msg4() i 1a.1: msg3()

l

—

-ClassD 1b.1: msg5()

:ClassC

Software Design and Analysis CSCI 2040 2

Iteration or Looping

—> —

runSimulation() 1 " [i:=1..N]: num := nextint()

M

: Simulator

: Random

iteration clause following the sequence numb

iteration is indicated with a * and an optional T
er

If the details of the iteration clause are not
important to the modeler, a simple just ’*’ can
be used instead.

Software Design and Analysis CSCI 2040 23

Ilteration Over Collection

R — I
t := getTotal() . Sale 1 ": st := getSubtotal() -SalesLineltem J

O *

O O

double box indicates a multiobject (collection)

these two * symbols used together imply for example, a List object containing many
iteration over the multiobject and sending the SalesLineltem objects

getSubtotal message to each member

Software Design and Analysis CSCI 2040 2

Messages to Class Object

Messages may be sent to a class itself, rather
than an instance, to invoke class or static

methods.
message to class, or a
static method call
msg1() l |
0 -
list := synchronizedList(aList)
. InstanceOfFoo java.util.Collections

not underlined,
therefore a class

Software Design and Analysis CSCI 2040

25

Sequence Diagram Notation

Sequence Diagrams Notation

Links

Unlike collaboration diagrams, sequence diagrams
do not show links.

Messages
Each message between objects is represented with

a message expression on an arrowed line between
the objects.

Software Design and Analysis CSCI 2040 27

Messages

The time ordering is organized from top to bottom.

. Register : Sale

I I
msg1() , 1 |
msg2() |

|
msg3() !

T
msg4() >

< msg5()

Activation boxes, are opaque rectangles drawn on top of lifelines

The represent that processes are being performed in response to
the message.

Software Design and Analysis CSCI 2040 78

How to Name System Events and Operations?

System events should be expressed at the abstract level
of intention rather than in terms of the physical input
device.

abstract and noncommittal with respect to design choices about
what interface is used to capture the system event.

. Cashier

better name k '
enterltem(itemlID, quantity)

v

v

|

|

|

|

:

|

scan(itemID, quantity) :
|

worse name A i
|

|

|

Software Design and Analysis CSCI 2040 29

lllustrating Returns

A sequence diagram may optionally show the return from
a message as a dashed open-arrowed line at the end of an
activation box.

Many practitioners exclude them.

Some annotate the return line to describe what is being returned (if
anything) from the message.

: Register : Sale
| |
msg1() ! !
’_g

msq2())

= -
msg3() .|
<_ ______________________ |
msgd() > |

< msgs()
______________________ >

30

Messages to Self or This

A message can be illustrated as being sent
from an object to itself by using a nested
activation box.

Creation of Instances

. Register - Sale nofte that newly created .
-edister objects are placed at their
creation "height"

I I

I |

| |
—L |
|

|

|

I

makePayment(cashTendered)

create(cashTendered) | : Payment

i

authorize() >E|]

|

! |

| |

I |

T > :
1 © - |

an object lifeline shows the extent of
the life of the object in the diagram

Software Design and Analysis CSCI 2040 32

Object Lifelines and Destruction

In some circumstances it is desirable to show
explicit destruction of an object (as in C++,
which does not have garbage collection);

Sale
create(cashTendered) » - Payment k
I the «destroy» stereotyped
> | message, with the large
: X and short lifeline
«destroy» ’X O indicates explicit object
destruction

Software Design and Analysis CSCI 2040 33

Conditional Messages

- Foo

[
|
message1(), !

» [color = red] calculate()

Bar
|
]
|
|

Software Design and Analysis CSCI 2040 34

Mutually Exclusive Conditional Messages

tA -B :C

message(), !

[x <10] calculate() | [

\ }
\ |
\ [Xx>15] calculate(‘)[|

|
|
|
[
|

Software Design and Analysis CSCI 2040 35

Iteration for Single Message

Iteration notation for one message

- Simulator : Random

runSimulation() > I

" [i:=1..N]: num := nextint()

N S

Software Design and Analysis CSCI 2040 36

Iteration for Sequence of Messages

- Simulator

runSimulation()

I
I
I

| g

: Random

- Programmer

I
I
I
I
|
I
I

hours := nextint()

]

work(hours)

*[i:=1..N]

eat()

I
I
I
I
I
I
I
I
I
f
I
I
|
I
I
|
I

Software Design and Analysis CSCI 2040

37

Example: Monopoly SSD

The Play Monopoly Game use case is simple, as is the

main scenario.

The observing person initializes with the number of players, and then
requests the simulation of play, watching a trace of the output until

there is a winner.
% ¢S s*cm-\

OBSQ(VQ(|
|

o

el p (oo Of Q’kv_.m) \

)
1

———plaGene "

‘“!J [\o winner | :
' |
4 - dice dotal, o sqgace
Il |

'

)
')

Software Design and Analysis CSCI 2040 38

Relationship Between SSDs and Use Cases

SSDs are derived from use cases; they show one
scenario.

Process Sale Scenado

Cashier System
makaNewSale -
Simple cash-only Procass Sale scenano
. - loop . [more items |
1. Customer arrives at a POS checkout enteritemiitemiD, quantity) >
with goods and/or services o purchase

2. Cashiar starts a new sale

3, Cashigr enters ibem denlifier

4. System records sale line ilem and

prasents item descrplion, price, and

runneng total

Cashier repeals sleps 3-4 unlil indicates A
done ,\ endSalo

5 System presents folal with laxes _\,.

calculated.

6. Cashier tells Customer the total, and W I——— L) pp——
asks for payment

7. Customer pays and Syslem handles

payment makePaymenti{amoun) >

Gescnpbon, total

Software Design and Analysis CSCI 2040 39

Iteration over Multiobject

I
: Sale :SalesLineltem J

t := getTotal()

!
I
- :
I
I
|

T

* . st := getSubtotal()

Software Design and Analysis CSCI 2040 0

Ilteration over a Collection

public class Sale

{
private List<SalesLineltem> lineltems =

new ArrayList<SalesLineltem>();

public Money getTotal()

{
Money total = new Money();
Money subtotal = null;

for (Saleslineltem lineltem : lineltems)

{

subtotal = lineltem.getSubtotal();
total _add(subtotal);

Software Design and Analysis CSCI 2040 a

Invoking Class or Static Methods

message to class, or a
static method call

: Foo java.util.Collections

[
| /’\ |)
message ! - | - , not underlined,
gel() list ;= synchronizedList(aList) I 7

>D therefore a class

Software Design and Analysis CSCI 2040 2

What are the two types of Interaction
Diagrams?

Why Interaction Diagrams are useful?

What is the advantage of Sequential Diagrams
over Collaboration Diagrams?

How to order messages in Collaboration
Diagrams and Sequential Diagrams,
respectively?

How to iterate over an multiobject in SDs?

Review Slides.

Practice interaction notation in MS Visio.
Read Chapter 15, Interaction Diagram
Notation

Applying UML and Patterns, Craig Larman

Software Design and Analysis CSCI 4030 a4

