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¡ In many data mining situations, we do not 
know the entire data set in advance

¡ Stream Management is important when the 
input rate is controlled externally:
§ Google queries
§ Twitter or Facebook status updates

¡ We can think of the data as infinite and 
non-stationary (the distribution changes 
over time)
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¡ Input elements enter at a rapid rate, 
at one or more input ports (i.e., streams)
§ We call elements of the stream tuples

¡ The system cannot store the entire stream 
accessibly

¡ Q: How do you make critical calculations 
about the stream using a limited amount of 
memory?
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¡ Stochastic Gradient Descent (SGD) is an 
example of a stream algorithm

¡ In Machine Learning we call this: Online Learning
§ Allows for modeling problems where we have 

a continuous stream of data 
§ We want an algorithm to learn from it and 

slowly adapt to the changes in data
¡ Idea: Do slow updates to the model

§ SGD (SVM, Perceptron) makes small updates
§ So: First train the classifier on training data. 
§ Then: For every example from the stream, we slightly 

update the model (using small learning rate)
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¡ Types of queries one wants on answer on 
a data stream:
§ Sampling data from a stream

§ Construct a random sample
§ Queries over sliding windows

§ Number of items of type x in the last k elements 
of the stream
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¡ Types of queries one wants answer on 
a data stream:
§ Filtering a data stream

§ Select elements with property x from the stream
§ Counting distinct elements

§ Number of distinct elements in the last k elements 
of the stream

§ Finding frequent elements
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¡ Mining query streams
§ Google wants to know what queries are 

more frequent today than yesterday

¡ Mining click streams
§ Yahoo wants to know which of its pages are 

getting an unusual number of hits in the past hour

¡ Mining social network news feeds
§ E.g., look for trending topics on Twitter, Facebook
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¡ Sensor Networks 
§ Many sensors feeding into a central controller

¡ Telephone call records 
§ Data feeds into customer bills

¡ IP packets monitored at a switch
§ Gather information for optimal routing
§ Detect denial-of-service attacks
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As the stream grows the sample 
also gets bigger



¡ Since we can not store the entire stream, 
one obvious approach is to store a sample

¡ Two different problems:
§ (1) Sample a fixed proportion of elements 

in the stream (say 1 in 10)
§ (2) Maintain a random sample of fixed size 

over a potentially infinite stream
§ At any “time” k we would like a random sample 

of s elements
§ What is the property of the sample we want to maintain?
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¡ Since we can not store the entire stream, 
one obvious approach is to store a sample

¡ Two different problems:
§ (1) Sample a fixed proportion of elements 

in the stream (say 1 in 10)
§ (2) Maintain a random sample of fixed size 

over a potentially infinite stream
§ At any “time” k we would like a random sample 

of s elements
§ What is the property of the sample we want to maintain?

For all time steps k, each of k elements seen so far has 
equal prob. of being sampled
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¡ Problem 1: Sampling fixed proportion
¡ Scenario: Search engine query stream
§ Stream of tuples: (user, query, time)
§ Answer questions such as: How often did a user 

run the same query in single days
§ Have space to store 1/10th of query stream

¡ Naïve solution:
§ Generate a random integer in [0..9] for each query
§ Store the query if the integer is 0, otherwise 

discard  
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¡ Simple question: What fraction of queries by a 

search engine average user are duplicates?

§ Suppose each user issues x queries once and d
queries twice (total of x+2d queries)
§ Correct answer: d/(x+d)

§ Proposed solution: We keep 10% of the queries

§ The sample-based answer is.. 
!

"#$%"&!
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Solution:
¡ Pick 1/10th of users and take all their 

searches in the sample

¡ Use a hash function that hashes the 
user name or user id uniformly into 10 
buckets
§ consider users that only hash only 1st bucket
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As the stream grows, the sample is of 
fixed size



¡ Problem 2: Fixed-size sample
¡ Suppose we need to maintain a random

sample S of size exactly s tuples
§ E.g., main memory size constraint

¡ Why? Don’t know length of stream in advance
¡ Suppose at time n we have seen n items
§ Each item is in the sample S with equal prob. s/n

18

How to think about the problem: say s = 2
Stream: a x c y z k c d e g…
At n= 5, each of the first 5 tuples is included in the sample S with equal prob.
At n= 7, each of the first 7 tuples is included in the sample S with equal prob.
Impractical solution would be to store all the n tuples seen 
so far and out of them pick s at random
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¡ Algorithm (a.k.a. Reservoir Sampling)
§ Store all the first s elements of the stream to S
§ Suppose we have seen n-1 elements, and now 

the nth element arrives (n > s)
§ With probability s/n, keep the nth element, else discard it
§ If we picked the nth element, then it replaces one of the 
s elements in the sample S, picked uniformly at random

¡ Claim: This algorithm maintains a sample S
with the desired property:
§ After n elements, the sample contains each 

element seen so far with probability s/n
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¡ A useful model of stream processing is that 
queries are about a window of length N: 
the N most recent elements received

¡ Interesting case: N is so large that the data 
cannot be stored in memory, or even on disk
§ Or, there are so many streams that windows 

for all cannot be stored
¡ Amazon example: 

§ For every product X we keep 0/1 stream of whether 
that product was sold in the n-th transaction

§ We want answer queries, how many times have we 
sold X in the last k sales
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¡ Sliding window on a single stream:

22

q w e r t y u i o p a s d f g h j k l z x c v b n m

q w e r t y u i o p a s d f g h j k l z x c v b n m

q w e r t y u i o p a s d f g h j k l z x c v b n m

q w e r t y u i o p a s d f g h j k l z x c v b n m

Past                   Future

N = 6
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¡ Problem:
§ Given a stream of 0s and 1s
§ Be prepared to answer queries of the form 

How many 1s are in the last k bits? where k≤ N

¡ Obvious solution: 
Store the most recent N bits
§ When new bit comes in, discard the N+1st bit

0 1 0 0 1 1 0 1 1 1 0 1 0 1 0 1 1 0 1 1 0 1 1 0
Past                              Future

Suppose N=6
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¡ You can not get an exact answer without 
storing the entire window

¡ Real Problem:
What if we cannot afford to store N bits?
§ E.g., we’re processing 1 billion streams and 

N = 1 billion

¡ But we are happy with an approximate 
answer
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0 1 0 0 1 1 0 1 1 1 0 1 0 1 0 1 1 0 1 1 0 1 1 0
Past                  Future
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¡ Q: How many 1s are in the last N bits?
¡ A simple solution that does not really solve 

our problem: Uniformity assumption

¡ Maintain 2 counters: 
§ S: number of 1s from the beginning of the stream
§ Z: number of 0s from the beginning of the stream

¡ How many 1s are in the last N bits? ! " #
#$%

¡ But, what if stream is non-uniform?
§ What if distribution changes over time?
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0 1 0 0 1 1 1 0 0 0 1 0 1 0 0 1 0 0 0 1 0 1 1 0 1 1 0 1 1 1 0 0 1 0 1 0 1 1 0 0 1 1 0 1 0
N

Past                  Future
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¡ DGIM solution that does not assume 
uniformity

¡ We store !(log&') bits per stream

¡ Solution gives approximate answer, 
never off by more than 50%
§ Error factor can be reduced to any fraction > 0, 

with more complicated algorithm and 
proportionally more stored bits
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¡ Idea: Summarize blocks with specific number 
of 1s:
§ Let the block sizes (number of 1s) increase 

exponentially

¡ When there are few 1s in the window, block 
sizes stay small, so errors are small
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N
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¡ Each bit in the stream has a timestamp, 
starting 1, 2, …

¡ Record timestamps modulo N (the window 
size)
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¡ A bucket in the DGIM method is a record 
consisting of:
§ (A) The timestamp of its end [O(log N) bits]
§ (B) The number of 1s between its beginning and 

end [O(log log N) bits]

¡ Constraint on buckets:
Number of 1s must be a power of 2

§ That explains the O(log log N) in (B) above
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¡ The right end of a bucket is always a position 
with a 1.

¡ Either one or two buckets with the same power-
of-2 number of 1s

¡ Buckets do not overlap in timestamps

¡ Buckets are sorted by size
§ Earlier buckets are not smaller than later buckets

¡ Buckets disappear when their 
end-time is > N time units in the past
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N

1 of
size 2

2 of
size 4

2 of
size 8

At least 1 of
size 16.  Partially
beyond window.

2 of
size 1

1001010110001011010101010101011010101010101110101010111010100010110010

Properties of buckets that are maintained:
- Either one or two buckets with the same power-of-2 number of 1s
- Buckets do not overlap in timestamps
- Buckets are sorted by size
- …
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¡ When a new bit comes in, drop the last 
(oldest) bucket if its end-time is prior to N
time units before the current time

¡ 2 cases: Current bit is 0 or 1

¡ If the current bit is 0:
no other changes are needed
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¡ If the current bit is 1:
§ (1) Create a new bucket of size 1, for just this bit
§ End timestamp = current time

§ (2) If there are now three buckets of size 1, 
combine the oldest two into a bucket of size 2

§ (3) If there are now three buckets of size 2,
combine the oldest two into a bucket of size 4

§ (4) And so on …
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1001010110001011010101010101011010101010101110101010111010100010110010

0010101100010110101010101010110101010101011101010101110101000101100101

0010101100010110101010101010110101010101011101010101110101000101100101

0101100010110101010101010110101010101011101010101110101000101100101101

0101100010110101010101010110101010101011101010101110101000101100101101

0101100010110101010101010110101010101011101010101110101000101100101101

Current state of the stream:

Bit of value 1 arrives

Two orange buckets get merged into a yellow bucket

Next bit 1 arrives, new orange bucket is created, then 0 comes, then 1:

Buckets get merged…

State of the buckets after all merging..
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¡ To estimate the number of 1s in the most 
recent N bits:

1. Sum the sizes of all buckets but the last
(note “size” means the number of 1s in the bucket)

2. Add half the size of the last bucket

¡ Remember: We do not know how many 1s 
of the last bucket are still within the wanted 
window
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¡ Sampling a fixed proportion of a stream
§ Sample size grows as the stream grows

¡ Sampling a fixed-size sample
§ Reservoir sampling

¡ Counting the number of 1s in the last N 
elements
§ DGIM
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¡ More algorithms for streams:
§ (1) Filtering a data stream: Bloom filters

§ Select elements with property x from stream
§ (2) Decaying Windows
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¡ Each element of data stream is a tuple
¡ Given a list of keys S 
¡ Determine which tuples of stream are in S

¡ Obvious solution: table
§ But suppose we do not have enough memory to 

store all of S in a table
§ E.g., we might be processing millions of filters 

on the same stream
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¡ Example: Email spam filtering
§ We know 1 billion “good” email addresses
§ If an email comes from one of these, it is NOT

spam

¡ Publish-subscribe systems
§ You are collecting lots of messages (news articles)
§ People express interest in certain sets of keywords
§ Determine whether each message matches user’s 

interest
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¡ Given a set of keys S that we want to filter
¡ Create a bit array B of n bits, initially all 0s
¡ Choose a hash function h with range [0,n)
¡ Hash each member of sÎ S to one of 
n buckets, and set that bit to 1, i.e., B[h(s)]=1

¡ Hash each element a of the stream and 
output only those that hash to bit that was 
set to 1
§ Output a if B[h(a)] == 1
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¡ Creates false positives but no false negatives
§ If the item is in S we surely output it, if not we may 

still output it
43

FilterItem

0010001011000

Output the item since it may be in S.
Item hashes to a bucket that at least 
one of the items in S hashed to.

Hash 
func h

Drop the item.
It hashes to a bucket set 
to 0 so it is surely not in S.

Bit array B

Big Data Analytics CSCI 4030



¡ |S| = 1 billion email addresses
|B|= 1GB = 8 billion bits

¡ If the email address is in S, then it surely 
hashes to a bucket that has the bit set to 1, 
so it always gets through (no false negatives)

¡ Approximately 1/8 of the bits are set to 1, so 
about 1/8th of the addresses not in S get 
through to the output (false positives)
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¡ Consider: |S| = m, |B| = n
¡ Use k independent hash functions h1 ,…, hk
¡ Initialization:
§ Set B to all 0s
§ Hash each element sÎ S using each hash function hi, 

set B[hi(s)] = 1 (for each i = 1,.., k)
¡ Run-time:
§ When a stream element with key x arrives

§ If B[hi(x)] = 1 for all i = 1,..., k then declare that x is in S
§ That is, x hashes to a bucket set to 1 for every hash function hi(x)

§ Otherwise discard the element x
45

(note: we have a 
single array B!)
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¡ Bloom filters guarantee no false negatives, 
and use limited memory
§ Great for pre-processing before more 

expensive checks
¡ Suitable for parallelization
§ Hash function computations can be parallelized
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¡ Exponentially decaying windows: A heuristic 
for selecting likely frequent item(sets)
§ What are “currently” most popular movies?

§ Instead of computing the raw count in last N elements
§ Compute a smooth aggregation over the whole stream

¡ If stream is a1, a2,… and we are taking the sum 
of the stream, take the answer at time t to be: 
= ∑#$%& '# % − ) &*#

§ c is a constant, presumably tiny, like 10-6 or 10-9

¡ When new at+1 arrives: 
Multiply current sum by (1-c) and add at+1
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¡ If each ai is an “item” we can compute the 
characteristic function of each possible 
item x as an Exponentially Decaying Window
§ That is: ∑"#$% &" ⋅ $ − ) %*"

where δi=1 if ai=x, and 0 otherwise
§ Imagine that for each item x we have a binary 

stream (1 if x appears, 0 if x does not appear)
§ New item x arrives:

§ Multiply all counts by (1-c)
§ Add +1 to count for element x

¡ Call this sum the “weight” of item x
49
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¡ The Stream Data Model: This model 
assumes data arrives at a processing engine 
at a rate that makes it infeasible to store 
everything in active storage. 

¡ One strategy to dealing with streams is to 
maintain summaries of the streams, 
sufficient to answer the expected queries 
about the data.

¡ A second approach is to maintain a sliding 
window of the most recently arrived data.
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¡ Sampling of Streams: To create a sample of 
a stream that is usable for a class of 
queries, we identify a set of key attributes 
for the stream. 

¡ By hashing the key of any arriving stream 
element, we can use the hash value to 
decide consistently whether all or none of 
the elements with that key will become 
part of the sample.
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¡ Bloom Filters: This technique allows us to 
filter streams so elements that belong to a 
particular set are allowed through, while most 
nonmembers are deleted. 

¡ We use a large bit array, and several hash 
functions. Members of the selected set are 
hashed to buckets, which are bits in the array, 
and those bits are set to 1. 

¡ To test a stream element for membership, we 
hash the element to a set of bits using each of 
the hash functions, and only accept the 
element if all these bits are 1.
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¡ Estimating the Number of 1’s in a Window: 
We can estimate the number of 1’s in a 
window of 0’s and 1’s by grouping the 1’s 
into buckets. 

¡ Each bucket has a number of 1’s that is a 
power of 2; there are one or two buckets of 
each size, and sizes never decrease as we 
go back in time. 

¡ If we record only the position and size of 
the buckets, we can represent the contents 
of a window of size N with O(!"#$N) space.
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¡ Answering Queries About Numbers of 1’s: If 
we want to know the approximate numbers 
of 1’s in the most recent k elements of a 
binary stream
§ we find the earliest bucket B that is at least 

partially within the last k positions of the window
§ and estimate the number of 1’s to be the sum of 

the sizes of each of the more recent buckets plus 
half the size of B. 

§ This estimate can never be off by more than 50% 
of the true count of 1’s.
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¡ Closer Approximations to the Number of 1’s: 
By changing the rule for how many buckets of 
a given size can exist in the representation of 
a binary window
§ so that either r or r −1 of a given size may exist
§ we can assure that the approximation to the true 

number of 1’s is never off by more than 1/r.
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¡ Exponentially Decaying Windows: Rather than 
fixing a window size, we can imagine that the 
window consists of all the elements that ever 
arrived in the stream
§ but with the element that arrived t time units ago 

weighted by !"#$ for some time-constant c. 

¡ Doing so allows us to maintain certain summaries 
of an exponentially decaying window easily. 
§ For instance, the weighted sum of elements can be 

recomputed, when a new element arrives by 
multiplying the old sum by 1 − c and then adding the 
new element.
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¡ Divide a following bit-stream into buckets 
following the DGIM rules. 
§ Assume without the loss of generality there are 

two buckets of size 1 and one bucket of size 2.
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¡ Suppose we start with buckets presented 
below and a 0 enters the stream. How the 
modified buckets will look like?
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¡ Suppose we start with buckets presented 
below and a 1 enters the stream. How the 
modified buckets will look like?
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¡ Suppose the window is as shown below. 
Estimate the number of 1’s for the last k 
positions, for k = 5.
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¡ Suppose the window is as shown below. 
Estimate the number of 1’s for the last k 
positions, for k = 15.
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¡ Assume 
¡ |S| = 1 billion email addresses
¡ |B|= 2GB = 16 billion bits
¡ Estimate the number of false positives in the bloom 

filtering by using a single hash function.
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¡ Assume 
¡ |S| = 1 billion email addresses
¡ |B|= 2GB = 16 billion bits
¡ Estimate the number of false positives in the bloom 

filtering.
¡ Approximately 1/16 of the bits are set to 1, so 

about 1/16th of the addresses not in S get 
through to the output (false positives).
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¡ How to improve the accuracy of the Bloom 
Filter?
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§ Review slides!
§ Read Chapter 4 from course book. 

§ You can find electronic version of the book on Blackboard. 
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