
Big Data Analytics CSCI 4030

High dim.
data

Locality
sensitive
hashing

Clustering

Dimensional
ity

reduction

Graph
data

PageRank,
SimRank

Community
Detection

Spam
Detection

Infinite
data

Filtering
data

streams

Queries on
streams

Web
advertising

Machine
learning

SVM

Decision
Trees

Perceptron,
kNN

Apps

Recommen
der systems

Association
Rules

Duplicate
document
detection

2Big Data Analytics CSCI 4030

¡ In many data mining situations, we do not
know the entire data set in advance

¡ Stream Management is important when the
input rate is controlled externally:
§ Google queries
§ Twitter or Facebook status updates

¡ We can think of the data as infinite and
non-stationary (the distribution changes
over time)

3Big Data Analytics CSCI 4030

4

¡ Input elements enter at a rapid rate,
at one or more input ports (i.e., streams)
§ We call elements of the stream tuples

¡ The system cannot store the entire stream
accessibly

¡ Q: How do you make critical calculations
about the stream using a limited amount of
memory?

Big Data Analytics CSCI 4030

5

Processor

Limited
Working
Storage

. . . 1, 5, 2, 7, 0, 9, 3

. . . a, r, v, t, y, h, b

. . . 0, 0, 1, 0, 1, 1, 0
time

Streams Entering.
Each is stream is

composed of
elements/tuples

Ad-Hoc
Queries

Output

Archival
Storage

Standing
Queries

Big Data Analytics CSCI 4030

¡ Stochastic Gradient Descent (SGD) is an
example of a stream algorithm

¡ In Machine Learning we call this: Online Learning
§ Allows for modeling problems where we have

a continuous stream of data
§ We want an algorithm to learn from it and

slowly adapt to the changes in data
¡ Idea: Do slow updates to the model

§ SGD (SVM, Perceptron) makes small updates
§ So: First train the classifier on training data.
§ Then: For every example from the stream, we slightly

update the model (using small learning rate)

6Big Data Analytics CSCI 4030

¡ Types of queries one wants on answer on
a data stream:
§ Sampling data from a stream

§ Construct a random sample
§ Queries over sliding windows

§ Number of items of type x in the last k elements
of the stream

7Big Data Analytics CSCI 4030

¡ Types of queries one wants answer on
a data stream:
§ Filtering a data stream

§ Select elements with property x from the stream
§ Counting distinct elements

§ Number of distinct elements in the last k elements
of the stream

§ Finding frequent elements

8Big Data Analytics CSCI 4030

¡ Mining query streams
§ Google wants to know what queries are

more frequent today than yesterday

¡ Mining click streams
§ Yahoo wants to know which of its pages are

getting an unusual number of hits in the past hour

¡ Mining social network news feeds
§ E.g., look for trending topics on Twitter, Facebook

9Big Data Analytics CSCI 4030

¡ Sensor Networks
§ Many sensors feeding into a central controller

¡ Telephone call records
§ Data feeds into customer bills

¡ IP packets monitored at a switch
§ Gather information for optimal routing
§ Detect denial-of-service attacks

10Big Data Analytics CSCI 4030

As the stream grows the sample
also gets bigger

¡ Since we can not store the entire stream,
one obvious approach is to store a sample

¡ Two different problems:
§ (1) Sample a fixed proportion of elements

in the stream (say 1 in 10)
§ (2) Maintain a random sample of fixed size

over a potentially infinite stream
§ At any “time” k we would like a random sample

of s elements
§ What is the property of the sample we want to maintain?

12Big Data Analytics CSCI 4030

¡ Since we can not store the entire stream,
one obvious approach is to store a sample

¡ Two different problems:
§ (1) Sample a fixed proportion of elements

in the stream (say 1 in 10)
§ (2) Maintain a random sample of fixed size

over a potentially infinite stream
§ At any “time” k we would like a random sample

of s elements
§ What is the property of the sample we want to maintain?

For all time steps k, each of k elements seen so far has
equal prob. of being sampled

13Big Data Analytics CSCI 4030

¡ Problem 1: Sampling fixed proportion
¡ Scenario: Search engine query stream
§ Stream of tuples: (user, query, time)
§ Answer questions such as: How often did a user

run the same query in single days
§ Have space to store 1/10th of query stream

¡ Naïve solution:
§ Generate a random integer in [0..9] for each query
§ Store the query if the integer is 0, otherwise

discard

14Big Data Analytics CSCI 4030

¡ Simple question: What fraction of queries by a

search engine average user are duplicates?

§ Suppose each user issues x queries once and d
queries twice (total of x+2d queries)
§ Correct answer: d/(x+d)

§ Proposed solution: We keep 10% of the queries

§ The sample-based answer is..
!

"#$%"&!

15Big Data Analytics CSCI 4030

Solution:
¡ Pick 1/10th of users and take all their

searches in the sample

¡ Use a hash function that hashes the
user name or user id uniformly into 10
buckets
§ consider users that only hash only 1st bucket

16Big Data Analytics CSCI 4030

As the stream grows, the sample is of
fixed size

¡ Problem 2: Fixed-size sample
¡ Suppose we need to maintain a random

sample S of size exactly s tuples
§ E.g., main memory size constraint

¡ Why? Don’t know length of stream in advance
¡ Suppose at time n we have seen n items
§ Each item is in the sample S with equal prob. s/n

18

How to think about the problem: say s = 2
Stream: a x c y z k c d e g…
At n= 5, each of the first 5 tuples is included in the sample S with equal prob.
At n= 7, each of the first 7 tuples is included in the sample S with equal prob.
Impractical solution would be to store all the n tuples seen
so far and out of them pick s at random

Big Data Analytics CSCI 4030

¡ Algorithm (a.k.a. Reservoir Sampling)
§ Store all the first s elements of the stream to S
§ Suppose we have seen n-1 elements, and now

the nth element arrives (n > s)
§ With probability s/n, keep the nth element, else discard it
§ If we picked the nth element, then it replaces one of the
s elements in the sample S, picked uniformly at random

¡ Claim: This algorithm maintains a sample S
with the desired property:
§ After n elements, the sample contains each

element seen so far with probability s/n
19Big Data Analytics CSCI 4030

¡ A useful model of stream processing is that
queries are about a window of length N:
the N most recent elements received

¡ Interesting case: N is so large that the data
cannot be stored in memory, or even on disk
§ Or, there are so many streams that windows

for all cannot be stored
¡ Amazon example:

§ For every product X we keep 0/1 stream of whether
that product was sold in the n-th transaction

§ We want answer queries, how many times have we
sold X in the last k sales

21Big Data Analytics CSCI 4030

¡ Sliding window on a single stream:

22

q w e r t y u i o p a s d f g h j k l z x c v b n m

q w e r t y u i o p a s d f g h j k l z x c v b n m

q w e r t y u i o p a s d f g h j k l z x c v b n m

q w e r t y u i o p a s d f g h j k l z x c v b n m

Past Future

N = 6

Big Data Analytics CSCI 4030

23

¡ Problem:
§ Given a stream of 0s and 1s
§ Be prepared to answer queries of the form

How many 1s are in the last k bits? where k≤ N

¡ Obvious solution:
Store the most recent N bits
§ When new bit comes in, discard the N+1st bit

0 1 0 0 1 1 0 1 1 1 0 1 0 1 0 1 1 0 1 1 0 1 1 0
Past Future

Suppose N=6

Big Data Analytics CSCI 4030

¡ You can not get an exact answer without
storing the entire window

¡ Real Problem:
What if we cannot afford to store N bits?
§ E.g., we’re processing 1 billion streams and

N = 1 billion

¡ But we are happy with an approximate
answer

24

0 1 0 0 1 1 0 1 1 1 0 1 0 1 0 1 1 0 1 1 0 1 1 0
Past Future

Big Data Analytics CSCI 4030

¡ Q: How many 1s are in the last N bits?
¡ A simple solution that does not really solve

our problem: Uniformity assumption

¡ Maintain 2 counters:
§ S: number of 1s from the beginning of the stream
§ Z: number of 0s from the beginning of the stream

¡ How many 1s are in the last N bits? ! " #
#$%

¡ But, what if stream is non-uniform?
§ What if distribution changes over time?

25

0 1 0 0 1 1 1 0 0 0 1 0 1 0 0 1 0 0 0 1 0 1 1 0 1 1 0 1 1 1 0 0 1 0 1 0 1 1 0 0 1 1 0 1 0
N

Past Future

Big Data Analytics CSCI 4030

¡ DGIM solution that does not assume
uniformity

¡ We store !(log&') bits per stream

¡ Solution gives approximate answer,
never off by more than 50%
§ Error factor can be reduced to any fraction > 0,

with more complicated algorithm and
proportionally more stored bits

26Big Data Analytics CSCI 4030

¡ Idea: Summarize blocks with specific number
of 1s:
§ Let the block sizes (number of 1s) increase

exponentially

¡ When there are few 1s in the window, block
sizes stay small, so errors are small

27

1001010110001011010101010101011010101010101110101010111010100010110010
N

Big Data Analytics CSCI 4030

28

¡ Each bit in the stream has a timestamp,
starting 1, 2, …

¡ Record timestamps modulo N (the window
size)

Big Data Analytics CSCI 4030

¡ A bucket in the DGIM method is a record
consisting of:
§ (A) The timestamp of its end [O(log N) bits]
§ (B) The number of 1s between its beginning and

end [O(log log N) bits]

¡ Constraint on buckets:
Number of 1s must be a power of 2

§ That explains the O(log log N) in (B) above

29

1001010110001011010101010101011010101010101110101010111010100010110010
N

Big Data Analytics CSCI 4030

¡ The right end of a bucket is always a position
with a 1.

¡ Either one or two buckets with the same power-
of-2 number of 1s

¡ Buckets do not overlap in timestamps

¡ Buckets are sorted by size
§ Earlier buckets are not smaller than later buckets

¡ Buckets disappear when their
end-time is > N time units in the past

30Big Data Analytics CSCI 4030

31

N

1 of
size 2

2 of
size 4

2 of
size 8

At least 1 of
size 16. Partially
beyond window.

2 of
size 1

1001010110001011010101010101011010101010101110101010111010100010110010

Properties of buckets that are maintained:
- Either one or two buckets with the same power-of-2 number of 1s
- Buckets do not overlap in timestamps
- Buckets are sorted by size
- …

Big Data Analytics CSCI 4030

¡ When a new bit comes in, drop the last
(oldest) bucket if its end-time is prior to N
time units before the current time

¡ 2 cases: Current bit is 0 or 1

¡ If the current bit is 0:
no other changes are needed

32Big Data Analytics CSCI 4030

¡ If the current bit is 1:
§ (1) Create a new bucket of size 1, for just this bit
§ End timestamp = current time

§ (2) If there are now three buckets of size 1,
combine the oldest two into a bucket of size 2

§ (3) If there are now three buckets of size 2,
combine the oldest two into a bucket of size 4

§ (4) And so on …

33Big Data Analytics CSCI 4030

34

1001010110001011010101010101011010101010101110101010111010100010110010

0010101100010110101010101010110101010101011101010101110101000101100101

0010101100010110101010101010110101010101011101010101110101000101100101

0101100010110101010101010110101010101011101010101110101000101100101101

0101100010110101010101010110101010101011101010101110101000101100101101

0101100010110101010101010110101010101011101010101110101000101100101101

Current state of the stream:

Bit of value 1 arrives

Two orange buckets get merged into a yellow bucket

Next bit 1 arrives, new orange bucket is created, then 0 comes, then 1:

Buckets get merged…

State of the buckets after all merging..

Big Data Analytics CSCI 4030

35

¡ To estimate the number of 1s in the most
recent N bits:

1. Sum the sizes of all buckets but the last
(note “size” means the number of 1s in the bucket)

2. Add half the size of the last bucket

¡ Remember: We do not know how many 1s
of the last bucket are still within the wanted
window

Big Data Analytics CSCI 4030

36

N

1 of
size 2

2 of
size 4

2 of
size 8

At least 1 of
size 16. Partially
beyond window.

2 of
size 1

1001010110001011010101010101011010101010101110101010111010100010110010

Big Data Analytics CSCI 4030

2x1 + 1x2 + 2x4 + 2x8 + 16/2 = 36

¡ Sampling a fixed proportion of a stream
§ Sample size grows as the stream grows

¡ Sampling a fixed-size sample
§ Reservoir sampling

¡ Counting the number of 1s in the last N
elements
§ DGIM

37Big Data Analytics CSCI 4030

¡ More algorithms for streams:
§ (1) Filtering a data stream: Bloom filters

§ Select elements with property x from stream
§ (2) Decaying Windows

38Big Data Analytics CSCI 4030

¡ Each element of data stream is a tuple
¡ Given a list of keys S
¡ Determine which tuples of stream are in S

¡ Obvious solution: table
§ But suppose we do not have enough memory to

store all of S in a table
§ E.g., we might be processing millions of filters

on the same stream

40Big Data Analytics CSCI 4030

¡ Example: Email spam filtering
§ We know 1 billion “good” email addresses
§ If an email comes from one of these, it is NOT

spam

¡ Publish-subscribe systems
§ You are collecting lots of messages (news articles)
§ People express interest in certain sets of keywords
§ Determine whether each message matches user’s

interest

41Big Data Analytics CSCI 4030

¡ Given a set of keys S that we want to filter
¡ Create a bit array B of n bits, initially all 0s
¡ Choose a hash function h with range [0,n)
¡ Hash each member of sÎ S to one of
n buckets, and set that bit to 1, i.e., B[h(s)]=1

¡ Hash each element a of the stream and
output only those that hash to bit that was
set to 1
§ Output a if B[h(a)] == 1

42Big Data Analytics CSCI 4030

¡ Creates false positives but no false negatives
§ If the item is in S we surely output it, if not we may

still output it
43

FilterItem

0010001011000

Output the item since it may be in S.
Item hashes to a bucket that at least
one of the items in S hashed to.

Hash
func h

Drop the item.
It hashes to a bucket set
to 0 so it is surely not in S.

Bit array B

Big Data Analytics CSCI 4030

¡ |S| = 1 billion email addresses
|B|= 1GB = 8 billion bits

¡ If the email address is in S, then it surely
hashes to a bucket that has the bit set to 1,
so it always gets through (no false negatives)

¡ Approximately 1/8 of the bits are set to 1, so
about 1/8th of the addresses not in S get
through to the output (false positives)

44Big Data Analytics CSCI 4030

¡ Consider: |S| = m, |B| = n
¡ Use k independent hash functions h1 ,…, hk
¡ Initialization:
§ Set B to all 0s
§ Hash each element sÎ S using each hash function hi,

set B[hi(s)] = 1 (for each i = 1,.., k)
¡ Run-time:
§ When a stream element with key x arrives

§ If B[hi(x)] = 1 for all i = 1,..., k then declare that x is in S
§ That is, x hashes to a bucket set to 1 for every hash function hi(x)

§ Otherwise discard the element x
45

(note: we have a
single array B!)

Big Data Analytics CSCI 4030

¡ Bloom filters guarantee no false negatives,
and use limited memory
§ Great for pre-processing before more

expensive checks
¡ Suitable for parallelization
§ Hash function computations can be parallelized

46Big Data Analytics CSCI 4030

¡ Exponentially decaying windows: A heuristic
for selecting likely frequent item(sets)
§ What are “currently” most popular movies?

§ Instead of computing the raw count in last N elements
§ Compute a smooth aggregation over the whole stream

¡ If stream is a1, a2,… and we are taking the sum
of the stream, take the answer at time t to be:
= ∑#$%& '# % −) &*#

§ c is a constant, presumably tiny, like 10-6 or 10-9

¡ When new at+1 arrives:
Multiply current sum by (1-c) and add at+1

48Big Data Analytics CSCI 4030

¡ If each ai is an “item” we can compute the
characteristic function of each possible
item x as an Exponentially Decaying Window
§ That is: ∑"#$% &" ⋅ $ −) %*"

where δi=1 if ai=x, and 0 otherwise
§ Imagine that for each item x we have a binary

stream (1 if x appears, 0 if x does not appear)
§ New item x arrives:

§ Multiply all counts by (1-c)
§ Add +1 to count for element x

¡ Call this sum the “weight” of item x
49

tiny, like 10-6 or 10-9

¡ The Stream Data Model: This model
assumes data arrives at a processing engine
at a rate that makes it infeasible to store
everything in active storage.

¡ One strategy to dealing with streams is to
maintain summaries of the streams,
sufficient to answer the expected queries
about the data.

¡ A second approach is to maintain a sliding
window of the most recently arrived data.

50Big Data Analytics CSCI 4030

¡ Sampling of Streams: To create a sample of
a stream that is usable for a class of
queries, we identify a set of key attributes
for the stream.

¡ By hashing the key of any arriving stream
element, we can use the hash value to
decide consistently whether all or none of
the elements with that key will become
part of the sample.

51Big Data Analytics CSCI 4030

¡ Bloom Filters: This technique allows us to
filter streams so elements that belong to a
particular set are allowed through, while most
nonmembers are deleted.

¡ We use a large bit array, and several hash
functions. Members of the selected set are
hashed to buckets, which are bits in the array,
and those bits are set to 1.

¡ To test a stream element for membership, we
hash the element to a set of bits using each of
the hash functions, and only accept the
element if all these bits are 1.

Big Data Analytics CSCI 4030 52

¡ Estimating the Number of 1’s in a Window:
We can estimate the number of 1’s in a
window of 0’s and 1’s by grouping the 1’s
into buckets.

¡ Each bucket has a number of 1’s that is a
power of 2; there are one or two buckets of
each size, and sizes never decrease as we
go back in time.

¡ If we record only the position and size of
the buckets, we can represent the contents
of a window of size N with O(!"#$N) space.

Big Data Analytics CSCI 4030 53

¡ Answering Queries About Numbers of 1’s: If
we want to know the approximate numbers
of 1’s in the most recent k elements of a
binary stream
§ we find the earliest bucket B that is at least

partially within the last k positions of the window
§ and estimate the number of 1’s to be the sum of

the sizes of each of the more recent buckets plus
half the size of B.

§ This estimate can never be off by more than 50%
of the true count of 1’s.

54Big Data Analytics CSCI 4030

¡ Closer Approximations to the Number of 1’s:
By changing the rule for how many buckets of
a given size can exist in the representation of
a binary window
§ so that either r or r −1 of a given size may exist
§ we can assure that the approximation to the true

number of 1’s is never off by more than 1/r.

55Big Data Analytics CSCI 4030

¡ Exponentially Decaying Windows: Rather than
fixing a window size, we can imagine that the
window consists of all the elements that ever
arrived in the stream
§ but with the element that arrived t time units ago

weighted by !"#$ for some time-constant c.

¡ Doing so allows us to maintain certain summaries
of an exponentially decaying window easily.
§ For instance, the weighted sum of elements can be

recomputed, when a new element arrives by
multiplying the old sum by 1 − c and then adding the
new element.

56Big Data Analytics CSCI 4030

¡ Divide a following bit-stream into buckets
following the DGIM rules.
§ Assume without the loss of generality there are

two buckets of size 1 and one bucket of size 2.

57Big Data Analytics CSCI 4030

¡ Suppose we start with buckets presented
below and a 0 enters the stream. How the
modified buckets will look like?

58Big Data Analytics CSCI 4030

¡ Suppose we start with buckets presented
below and a 1 enters the stream. How the
modified buckets will look like?

59Big Data Analytics CSCI 4030

¡ Suppose the window is as shown below.
Estimate the number of 1’s for the last k
positions, for k = 5.

60Big Data Analytics CSCI 4030

¡ Suppose the window is as shown below.
Estimate the number of 1’s for the last k
positions, for k = 15.

61Big Data Analytics CSCI 4030

¡ Assume
¡ |S| = 1 billion email addresses
¡ |B|= 2GB = 16 billion bits
¡ Estimate the number of false positives in the bloom

filtering by using a single hash function.

62Big Data Analytics CSCI 4030

¡ Assume
¡ |S| = 1 billion email addresses
¡ |B|= 2GB = 16 billion bits
¡ Estimate the number of false positives in the bloom

filtering.
¡ Approximately 1/16 of the bits are set to 1, so

about 1/16th of the addresses not in S get
through to the output (false positives).

63Big Data Analytics CSCI 4030

¡ How to improve the accuracy of the Bloom
Filter?

64Big Data Analytics CSCI 4030

§ Review slides!
§ Read Chapter 4 from course book.

§ You can find electronic version of the book on Blackboard.

Big Data Analytics CSCI 4030
65

