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¡ Given a cloud of data points we want to 
understand its structure
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¡ Given a set of points, with a notion of distance
between points, group the points into some 
number of clusters, so that 
§ Members of a cluster are close/similar to each other
§ Members of different clusters are dissimilar

¡ Usually:
§ Points are in a high-dimensional space
§ Similarity is defined using a distance measure

§ Euclidean, Cosine, Jaccard, edit distance, …
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¡ Clustering in two dimensions looks easy
¡ Clustering small amounts of data looks easy
¡ And in most cases, looks are not deceiving

¡ Many applications involve not 2, but 10 or 
10,000 dimensions

¡ High-dimensional spaces look different: 
Many pairs of points are at about the same 
distance
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¡ A catalog of 2 billion “sky objects” represents 
objects by their radiation in 7 dimensions 
(frequency bands)

¡ Problem: Cluster into similar objects, e.g., 
galaxies, nearby stars, quasars, etc.
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¡ Intuitively: Music divides into categories, and 
customers prefer a few categories
§ But what are categories really?

¡ Represent a CD by a set of customers who 
bought it

¡ Similar CDs have similar sets of customers
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Space of all CDs:
§ Values in a dimension may be 0 or 1 only
§ A CD is a point in this space (x1, x2,…, xk), 

where xi = 1 iff the i th customer bought the CD

¡ For Amazon, the dimension is tens of millions

¡ Task: Find clusters of similar CDs
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Finding topics:
¡ Represent a document by a vector  

(x1, x2,…, xk), where xi = 1 iff the i th word 
(in some order) appears in the document

¡ Documents with similar sets of words 
may be about the same topic
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¡ As with CDs we have a choice when we 
think of documents as sets of words or 
shingles:
§ Sets as vectors: Measure similarity by the 

Cosine Distance
§ Sets as sets: Measure similarity by the 

Jaccard Distance
§ Sets as points: Measure similarity by 

Euclidean Distance
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¡ Hierarchical:
§ Agglomerative (bottom up):

§ Initially, each point is a cluster
§ Repeatedly combine the two 

“nearest” clusters into one

§ Divisive (top down):
§ Start with one cluster and recursively split it

¡ Point assignment:
§ Maintain a set of clusters
§ Points belong to “nearest” cluster
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¡ Key operation: 
Repeatedly combine 
two nearest clusters

¡ Three important questions:
§ 1) How do you represent a cluster of more 

than one point?
§ 2) How do you determine the “nearness” of 

clusters?
§ 3) When to stop combining clusters?
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¡ Key operation: Repeatedly combine two 
nearest clusters

¡ (1) How to represent a cluster of many points?
§ Key problem: As you merge clusters, how do you 

represent the “location” of each cluster, to tell which 
pair of clusters is closest?

¡ Euclidean case: each cluster has a 
centroid = average of its (data)points

¡ (2) How to determine “nearness” of clusters?
§ Measure cluster distances by distances of centroids
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What about the Non-Euclidean case?
¡ The only “locations” we can talk about are the 

points themselves
§ i.e., there is no “average” of two points

¡ Approach 1:
§ (1) How to represent a cluster of many points?
clustroid = (data)point “closest” to other points

§ (2) How do you determine the “nearness” of 
clusters? Treat clustroid as if it were centroid, when 
computing inter-cluster distances
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¡ (1) How to represent a cluster of many points?
clustroid = point “closest” to other points

¡ Possible meanings of “closest”:
§ Smallest maximum distance to other points
§ Smallest average distance to other points
§ Smallest sum of squares of distances to other points

§ For distance metric d clustroid c of cluster C is:
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¡ (2) How do you determine the “nearness” of 
clusters? 
§ Approach 2: 

Intercluster distance = minimum of the distances 
between any two points, one from each cluster
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¡ Naïve implementation of hierarchical 
clustering:
§ At each step, compute pairwise distances 

between all pairs of clusters, then merge
§ O(N3)

§ Too expensive for really big datasets 
that do not fit in memory
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¡ Assumes Euclidean space/distance

¡ Start by picking k, the number of clusters

¡ Initialize clusters by picking one point per 
cluster
§ Example: Pick one point at random, then  k-1 

other points, each as far away as possible from 
the previous points
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¡ 1) For each point, place it in the cluster whose 
current centroid it is nearest

¡ 2) After all points are assigned, update the 
locations of centroids of the k clusters

¡ 3) Reassign all points to their closest centroid
§ Sometimes moves points between clusters

¡ Repeat 2 and 3 until convergence
§ Convergence: Points don’t move between clusters 

and centroids stabilize
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How to select k?
¡ Try different k, looking at the change in the 

average distance to centroid as k increases
¡ Average falls rapidly until right k, then 

changes little
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Extension of k-means to large data



¡ BFR [Bradley-Fayyad-Reina] is a 
variant of k-means designed to 
handle very large (disk-resident) data sets

¡ Assumes that clusters are normally distributed 
around a centroid in a Euclidean space

§ Clusters are axis-aligned ellipses

¡ Efficient way to summarize clusters 
(want memory required O(clusters) and not O(data))
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¡ Points are read from disk into main memory 
in chunks.

¡ Most points from previous memory loads are 
summarized by simple statistics

¡ To begin, from the initial load we select the 
initial k centroids by some sensible approach:
§ Take k random points
§ Take a small random sample and cluster optimally
§ Take a sample; pick a random point, and then 
k–1 more points, each as far from the previously 
selected points as possible
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3 sets of points which we keep track of:
¡ Discard set (DS):

§ Points close enough to a centroid to be 
summarized. Only summaries are kept in main 
memory.

¡ Compression set (CS): 
§ Groups of points that are close together but not 

close to any existing centroid
§ These points are summarized, but not assigned to 

a cluster. Only summaries are kept in main 
memory.

¡ Retained set (RS):
§ Isolated points waiting to be assigned to a 

compression set. Held in main memory exactly as 
they are.
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For each cluster, the discard set (DS) is 
summarized by:
¡ The number of points, N
¡ The vector SUM, whose ith component is the 

sum of the coordinates of the points in the 
ith dimension

¡ The vector SUMSQ: ith component = sum of 
squares of coordinates in ith dimension
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¡ 2d + 1 values represent any size cluster
§ d = number of dimensions

¡ Average in each dimension (the centroid) 
can be calculated as SUMi / N
§ SUMi = ith component of SUM

¡ Variance of a cluster’s discard set in 
dimension i is: (SUMSQi / N) – (SUMi / N)2

§ And standard deviation is the square root of that
¡ Next step: Actual clustering

39Big Data Analytics CSCI 4030



Processing the “Memory-Load” of points (1), 
i.e. chunk of points:
¡ 1) Find those points that are “sufficiently 

close” to a cluster centroid and add those 
points to that cluster and the DS
§ These points are so close to the centroid that 

they can be summarized and then discarded
¡ 2) Use any main-memory clustering algorithm 

to cluster the remaining points and the old RS
§ Clusters go to the CS; outlying points to the RS
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Processing the “Memory-Load” of points (2):
¡ 3) DS set: Adjust statistics of the clusters to 

account for the new points
§ Add Ns, SUMs, SUMSQs

¡ 4) Consider merging compressed sets in the CS
¡ 5) If this is the last round (last chunk of data), 

merge all compressed sets in the CS and all RS
points into their nearest cluster (or treat them 
as outliers)
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¡ Q1) How do we decide if a point is “close 
enough” to a DS cluster that we will add the 
point to that cluster?

¡ Q2) How do we decide whether two 
compressed sets (CS) deserve to be 
combined into one?
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¡ Q1) We need a way to decide whether to put 
a new point into a cluster (and discard)

¡ e.g, BFR suggests:
§ The Mahalanobis distance is less than a threshold
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¡ Normalized Euclidean distance from centroid

¡ For point (x1, …, xd) and centroid (c1, …, cd)
1. Normalize in each dimension: yi = (xi - ci) / si

2. Take sum of the squares of the yi

3. Take the square root

! ", $ = &
'()

* "' − $'
,'

-
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σi … standard deviation of points in 
the cluster in the ith dimension
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¡ Accept a point for a cluster if 
its M.D. is < some threshold, 
e.g. 2 standard deviations
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Q2) Should 2 CS subclusters be combined?
¡ Compute the variance of the combined 

subcluster
§ N, SUM, and SUMSQ allow us to make that 

calculation quickly
¡ Combine if the combined variance is 

below some threshold
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Extension of k-means to clusters
of arbitrary shapes



¡ Problem with BFR:
§ Assumes clusters are normally 

distributed in each dimension
§ And axes are fixed – ellipses at 

an angle are not OK

¡ CURE (Clustering Using REpresentatives):
§ Assumes a Euclidean distance
§ Allows clusters to assume any shape
§ Uses a collection of representative 

points to represent clusters
49
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2 Pass algorithm. Pass 1:
¡ 0) Pick a random sample of points that fit in 

main memory
¡ 1) Initial clusters: 
§ Cluster these points hierarchically – group 

nearest points/clusters
¡ 2) Pick representative points:
§ For each cluster, pick a sample of points, as 

dispersed as possible
§ From the sample, pick representatives by moving 

them (say) 20% toward the centroid of the cluster
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Pass 2:
¡ Now, rescan the whole dataset and 

visit each point p in the data set

¡ Place it in the “closest cluster”
§ Normal definition of “closest”: 

Find the closest representative to p and 
assign it to representative’s cluster
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¡ Clustering: Given a set of points, with a notion 
of distance between points, group the points
into some number of clusters

¡ Algorithms:
§ Agglomerative hierarchical clustering: 

§ Centroid and clustroid
§ k-means: 

§ Initialization, picking k
§ BFR
§ CURE
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¡ Apply hierarchical clustering on the following 
data in a 2-dimensional Euclidean space.

¡ Assume stopping point is k = 6.
¡ Present the tree showing the complete 

grouping of the points.
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¡ Ans:
§ Initially, each point is in a cluster by itself and is 

the centroid of that cluster.
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§ Among all the pairs of points, there are two pairs 
that are the closest: (10, 5) and (11, 4) or (11, 4) 
and (12, 3). Each is at distance 2.

§ Let us break ties arbitrarily and decide to combine 
(11,4) with (12,3). The result is shown in figure 
below, including the centroid of the new cluster, 
which is at (11.5, 3.5).
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¡ Thus, now the two closest clusters are those 
of the points (4,8) and (4,10). We combine 
them into one cluster with centroid (4,9). See 
figure on the next slide.

¡ At this point, the two closest centroids are 
(10,5) and (11.5, 3.5), so we combine these 
two clusters. The result is a cluster of three 
points (10,5), (11,4), and (12,3). The centroid 
of this cluster is (11,4).
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¡ Now, there are several pairs of centroids that are at 
distance 5 and these are the closest centroids.
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¡ (6,8) is combined with the cluster of two elements 
having centroid (4,9).

¡ (2,2) is combined with (3,4).
¡ (9,3) is combined with the cluster of three elements 

having centroid (11,4).
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¡ Tree presenting the grouping:
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¡ Let us consider the twelve points presented 
below. K-Means clustering algorithm for k = 3 
is used. 

¡ Assume the initial choice of point is (6,8). 
What are the other two initial points? Pick 
points that are as far away as possible.

¡ Provide result of K-Means alg.
after 2nd round. 
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¡ Ans:

§ The furthest point from (6,8) is (12,3), so that point is 
chosen.

§ Among the remaining ten points, the one whose minimum 
distance to either (6,8) or (12,3) is a maximum is (2,2).

§ That point has distance √52 = 7.21 from (6,8) and distance 
√101 = 10.05 to (12,3); thus its “score” is 7.21. 

§ You can check easily that any other point is less than 
distance 7.21 from at least one of (6,8) and (12,3). 

§ Our selection of three starting points is thus (6,8), (12,3), 
and (2,2).

§ Note: compute the result of K-Means after 2nd round on 
your own and compare with other students.
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¡ Which of the following three shapes are 
allowed for clusters in BFR algorithm?
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¡ Ans:
§ The clusters in data for which the BFR algorithm 

may be used can have standard deviations that 
differ along different axes, but the axes of the 
cluster must align with the axes of the space.
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¡ Suppose a cluster consists of the points (5, 1), 
(6,−2), and (7, 0).
§ Compute each of the following statistics:

§ N

§ SUM

§ SUMSQ

§ Centroid

§ Variance

§ Standard Deviation

¡ Do statistics have to be computed from 
scratch in each round of BFR algorithm?

68
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¡ Ans:
§ Then N = 3, 
§ SUM = [18,−1], and SUMSQ = [110, 5]. 
§ The centroid is SUM/N, or [6,−1/3]. 
§ The variance in the first dimension is 110/3 − 18/3%= 

0.667, 
§ So the standard deviation is 0.667 = 0.816. 
§ In the second dimension, the variance is 5/3 − 
(−1/3)% = 1.56, so the standard deviation is 1.25.

§ NO! They can be updated based on the previous 
values of statistics to save computation! This is at the 
heart of BFR algorithm.
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¡ Assuming following selection of 
representative points from each cluster move 
the representative points 20% of the distance 
to the cluster’s centroid.
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¡ Ans:
§ Moving the representative points 20% of the 

distance to the cluster’s centroid
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¡ Suppose a cluster of three-dimensional points 
has standard deviations of 2, 3, and 5, in the 
three dimensions, in that order. Compute the 
Mahalanobis distance between the origin (0, 
0, 0) and the point (1,−3, 4).
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¡ Suppose a cluster of three-dimensional points 
has standard deviations of 2, 3, and 5, in the 
three dimensions, in that order. Compute the 
Mahalanobis distance between the origin (0, 
0, 0) and the point (1,−3, 4).

¡ Ans:
§ Mahalanobis distance
§ …
§ …
§ Compute the results individually and then 

compare it with other students.
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¡ Clustering: Clusters are often a useful summary 
of data that is in the form of points in some 
space. 
§ To cluster points, we need a distance measure on that 

space. Ideally, points in the same cluster have small 
distances between them, while points in different 
clusters have large distances between them.

¡ Clustering Algorithms: Clustering algorithms 
generally have one of two forms. 
§ Hierarchical clustering algorithms begin with all points 

in a cluster of their own, and nearby clusters are 
merged iteratively. 
Point-assignment clustering algorithms consider points in turn 
and assign them to the cluster in which they best fit.
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¡ Centroids and Clustroids: In a Euclidean 
space, the members of a cluster can be 
averaged, and this average is called the 
centroid. 

¡ In non-Euclidean spaces, there is no 
guarantee that points have an “average,” so 
we are forced to use one of the members of 
the cluster as a representative or typical 
element of the cluster. That representative is 
called the clustroid.
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¡ K-Means Algorithms: This family of algorithms is 
of the point-assignment type and assumes a 
Euclidean space. 
§ It is assumed that there are exactly k clusters for some 

known k. 
§ After picking k initial cluster centroids, the points are 

considered one at a time and assigned to the closest 
centroid.

§ The centroid of a cluster can migrate during point 
assignment, and an optional last step is to reassign all 
the points, while holding the centroids fixed at their 
final values obtained during the first pass.
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¡ The BFR Algorithm: This algorithm is a version of 
k-means designed to handle data that is too large 
to fit in main memory. It assumes clusters are 
normally distributed about the axes.

¡ Processing Points in BFR: Most of the points in a 
main-memory load will be assigned to a nearby 
cluster and the parameters for that cluster will be 
adjusted to account for the new points. 
§ Unassigned points can be formed into new 

miniclusters, and these miniclusters can be merged 
with previously discovered miniclusters or retained 
points. 
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¡ The CURE Algorithm: This algorithm is of the 
point-assignment type. It is designed for a 
Euclidean space, but clusters can have any 
shape. It handles data that is too large to fit in 
main memory.

¡ Processing Points in CURE: After creating 
representative points for each cluster, the 
entire set of points can be read from disk and 
assigned to a cluster. We assign a given point 
to the cluster of the representative point that 
is closest to the given point.
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§ Review slides!
§ Read Chapter 7 from course book. 

§ You can find electronic version of the book on Blackboard. 
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