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Introduction

▪ Data is everywhere
– And it keeps increasing
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Introduction

▪ How can we store all this data?
– Database
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Edgar Codd invents the Relational Data Model, 
and its first order theory. IBM team implements 
System R. 1970
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Relational Database

▪ Relational Database
– Highly structured data
– Represents information in tables with rows (tuples) and columns (attributes)

▪ References to tuples in other table by referring to their primary-key 
(PK) attributes via foreign-key (FK) columns
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Relational Database

▪ Structured Query Language (SQL)
– Standard language for storing, manipulating and retrieving data in databases
– Very-high-level language
– Query optimization

▪ SQL example: find everyone who has a BMW car with max number 
of passengers = 5
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SELECT NAME FROM "PERSON"
WHERE ( 

PERSON."CAR_ID" IN (
SELECT ID FROM CAR
WHERE (

CAR."TYPE" = 'BMW' AND
CAR."MAX_NUM_OF_PAS" = 5)

)
)

);
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Relational Database

▪ Joins are computed at query time by matching primary- and 
foreign-keys of the many rows of the to-be-joined tables

▪ These operations are compute- and memory-intensive and have an 
exponential cost

▪ A lot of the data available is naturally represented as graphs
– Data is related to resources
– Example: Social network data
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Relational Database
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How can we improve the 
performance for this 

type of data?
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Graph Database
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Graph Database

▪ Relationships are first-class citizens of the graph data model

▪ Graph databases enable us to build sophisticated models that map 
closely to our problem domain

▪ Each node (entity or attribute) in the graph database model directly 
and physically contains a list of relationship-records that represent 
its relationships to other nodes

▪ Whenever you run the equivalent of a JOIN operation, the database 
just uses this list and has direct access to the connected nodes, 
eliminating the need for a expensive search / match computation
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Graph Database

▪ Support a very flexible and fine-grained data model
– Manage rich domains in an easy and intuitive way
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Graph Database

▪ Relational model to Graph model
– Each entity table is represented by a label on nodes

– Each row in a entity table is a node

– Columns on those tables become node properties

– Foreign keys become relationships

▪ Connections between nodes is directly link in such a way that 

relating data becomes a simple matter of following connections

▪ Helps companies to make sense of the masses of connect data that 

exist today
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RDF

▪ Resource Description Framework (RDF)
– W3C specification
– Standard model for data interchange on the web

▪ The language description model allows the creation of statements 
about a resource either by defining its relationships with other 
resources or by defining its attributes

▪ Model is composed by triples
– Subject
– Predicate
– Object

▪ Subjects, predicates and objects are normally composed by a URI 
and a node identification

14
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RDF

▪ Example:
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A person called "John" that has a car "BMW", where this car has 
maximum number of passengers equals to "5". 
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RDF

▪ RDF can be represented in different formats:
– N-triples, turtle, RDF/XML, etc.

▪ N-triples representation of the previous example:

▪ RDF can also be represented by quadruples
– Graphs
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<http://myLocal/person/John> <http://myLocal/hasName> “John” .
<http://myLocal/person/John> <http://myLocal/hasCarType> <http://myLocal/car/BMW> .
<http://myLocal/car/BMW> <http://myLocal/hasType> “BMW” .
<http://myLocal/car/BMW> <http://myLocal/hasMaxNumberOfPassengers> 
“5”^^<http://www.w3.org/2001/XMLSchema#integer> .

http://mylocal/personName/John
http://mylocal/hasName
http://mylocal/hasType
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▪ There is no direct way to represent properties in relationships, but 
it can be accomplished by Blank Nodes

– Resource for which a URI or literal is not given

▪ Can make use of ontologies
– Vocabularies in a standard format
– Establishes the relationship between variables

▪ Ex: Integration of data coming from different publishers
– The data can be imported into a common RDF model, eg, by using converters 

to the publishers' databases. However, one database may use the term 
“author”, whereas the other may use the term “creator” 

▪ To make the integration complete, and extra definition should be 
added to the RDF data

– Describing the fact that the relationship described as “author” is the same as 
“creator”

RDF
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SPARQL

▪ SPARQL is a recursive acronym for SPARQL Protocol and RDF Query 
Language

– Semantic query language for databases able to retrieve data stored in RDF 
format

– Support by W3C

▪ SPARQL query that returns every person who has a BMW with 
maximum number of passengers as 5
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PREFIX predicate: <http://myLocal/>
SELECT ?name
WHERE
{

?x predicate:hasName ?name .
?x predicate:hasCarType ?car .
?car predicate:hasType "BMW" .
?car predicate:hasMaxNumberOfPassengers 5

}

http://mylocal/
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SPARQL

▪ Property paths
– elt* → zero or more occurrences of elt
– elt+ → one or more occurrences of elt
– elt? → A path of zero or one elt
– elt1 / elt2 → A sequence path of elt1, followed by elt2
– ^elt → Inverse path (object to subject)
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PREFIX predicate: <http://myLocal/>
SELECT ?a ?b ?c
WHERE
{

?a predicate:hasType "NLJOIN" .
?a predicate:hasLeftChild+ ?b .
?b predicate:hasType "TBSCAN" .
?b predicate:hasGenericChild ?c .
?c predicate:hasType "BASEOB" .

}

http://mylocal/
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Graph Database
Pros

▪ Flexibility
– The data captured can be easily changed and extended for additional 

attributes and objects

▪ Data relationship exploration
– No join index lookup (just follow connections)
– Traverse millions of nodes per second
– "Which supplier provided the products owned by this group of customers?" 

▪ Indexing
– Graph databases are naturally indexed by relationships (the strength of the 

underlying model), providing faster access compared to relational data for 
data

20
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Graph Database
Cons

▪ Not efficient at
– Processing high volumes of transactions
– Handling queries that span the entire database

▪ For most common graph databases, you have to store all the data 
on one server

▪ Still fairly new compared to relational software, which has now 
existed for a full generation

– It takes time to build a solid database market after all, regardless of data 
model

▪ Some graph databases only offer the graph model, but the 
underlying implementation is backed by a traditional
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Relational Database x Graph Database

▪ Which one is better?
– Depends

22

Graph Database
If your domain entities have relationships to other entities, and your queries 
rely on exploring those relationships

Relational Database
If you have large-volume analytics queries typical of data warehousing



© 2010 IBM Corporation

IBM Power Systems

Graph Database
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"It is important to note the consequence of 
using graph databases. The query latency in a 
graph is proportional to how much of the graph 
you choose to explore in a query, and is not 
proportional to the amount of data stored." 

Jim Webber, author of Graph Databases
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Background

▪ DB2
– Relational Database 

Management System
– Query tuning
– Access Plan or Query 

Execution Plan (QEP)

▪ QEP
– Contains a graphical format 

portion represented in a tree 
structure

– Contains a text format 
portion

27
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Estimate number of rows
Type
ID
Cumulative total cost
Cumulative I/O cost
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Motivation

▪ World's most valuable data remains in relational databases

▪ Complex analytic queries are a part of business operations

▪ Database systems are becoming more sophisticated

▪ Currently, tools for query performance problem determination 
have limitations, so performance analysis is often best done by 
manually analysis

31
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Motivation

▪ Existing tools provide running recommendations for specific known 
problems

– IBM® Optim Query Tuner®, IBM Optim Workload Tuner®, etc.

▪ Some characteristics of query execution plan (QEPs) are not easily 
found by the use of search tools like “grep”

▪ Query performance problem determination is valuable inside IBM 
support of business clients and database optimizer development 
organization

▪ Optimizations and performance tuning strategies becomes 
necessary to maintain the usability of the database

32
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Motivation

▪ Incorporating OptImatch many optimization problems could be 
automatically identified and resolved 

▪ Text graph version of a snippet of a QEP from IBM DB2 

▪ Problem: NLJOIN has inner stream                                                              
of type table scan (TBSCAN)

– Costly
– NLJOIN scans entire inner TABLE                                                                    for 

each rows from the outer                                                                         TABLE

▪ Solution: create an index of the                                                            
target table of the TBSCAN
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Transforming Diagnostic Data

▪ Parser
– Define the property structure and property name for the RDF

▪ RDF
– Represents the QEP
– RDF is supported by DB2
– RDF does not enforce specific schema, but it can be enforced by specifying 

predicates and establishing  the relationship between LOLEPOPs
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Transforming Diagnostic Data

▪ SPARQL
– RDF language
– Property paths
– Supported by DB2

▪ Handlers
– Result (Retrieval) 
– Internal (Filtering)
– Relationship
– Blank Node

38
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Searching for Problem Patterns

▪ Web-based graphical interface

▪ Upload Files 

▪ Properties and relationship 
between nodes

40

▪ Pattern #1 example 
(High read cost)

– (i) is of type “NLJOIN”
– (ii) outer input stream of type “ANY” and cardinality > 1
– (iii) has inner input stream of type “TBSCAN”
– (iv) inner input stream has cardinality > 100
– (v) “TBSCAN” has generic input stream of type “BASE OB”

▪ Solution
– Create an index in the table read by the TBSCAN
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Searching for Problem Patterns
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Providing Recommendations with Knowledge Base

▪ Populated with predetermined problem patterns and associated 
query plan recommendations

▪ Problem pattern → SPARQL query with result handlers

▪ Use of alias to specify a result handler

▪ Use of handlers tagging

▪ Static and dynamic components

▪ Use of “@” sign to represent a result handler
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Providing Recommendations with Knowledge Base

▪ Use of 1 handler: @TOP

▪ Use of multiple handlers: [@TOP, @BASE4]

▪ Limit number of occurrences: [@TOP, @BASE4]:1
– List only 1 result

▪ Use of helper functions

▪ List columns: @TOP.listColumns(“PREDICATE”)
– List columns from an alias handler in the predicate

▪ Example: “Create index on table @BASE4 on columns    
@TOP.listColumns("INPUT”)” 
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Providing Recommendations with Knowledge Base
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Providing Recommendations with Knowledge Base

▪ OptImatch can provide advanced guidance with variety of 
recommendations

▪ Pattern #2 (estimation of the execution cost by optimizer)
– (i) LOLEPOP of type index Scan (IXSCAN) or table scan (TBSCAN) 
– (ii) has cardinality < 0.001
– (iii) has a generic input stream of type Base Object (BASE OB)
– (iv) the generic input stream has cardinality > 100000

▪ Recommendation: 
– Create column group statistics (CGS) on equality local predicate columns and 

CGS on equality join predicate columns of the Base Object. 
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Providing Recommendations with Knowledge Base

▪ Pattern #3 (poor join order)
– (i) LOLEPOP of type JOIN
– (ii) has a descendant outer input stream of type JOIN
– (ii) has a descendant inner input stream of type JOIN 
– (iii) the descendant outer input stream join is a Left Outer Join 
– (iv) descendant inner input stream join is a Left Outer Join

▪ Recommendation: 
– Rewrite the query from the following structure (T1 LOJ T2) … JOIN … (T3 LOJ 

T4) to ((T1 LOJ T2).... JOIN ....T3) LOJ T4 as the rewritten query is more 
efficient

▪ With all provided patterns and recommendations, a user, with no 
particular knowledge or training, can run a general test of all 
predetermined problem patterns against a given query workload
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Experimental Study

▪ Focuses on 3 objectives:
– Effectiveness using real IBM customer query workload. 
– Scalability and performance:

• Sizes of the query workload, 
• Number of LOLEPOPs 
• Number of recommendations in the knowledge base. 

– Comparative study with manual search for patterns by experts
• Time and precision

▪ Patterns used through experimental study:
– Pattern #1
– Pattern #2
– Pattern #3 
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Performance and Scalability Study
Size of Query Workload

▪ Search increases linearly with the number of QEP files

▪ For 1000 QEPs, time to perform the search is less than 30 seconds

▪ Pattern #3 takes longer because it is more complex, containing 
descendant nodes (using recursion to analyze)
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Performance and Scalability Study
Number of LOLEPOPs

▪ For patterns #1 and #2 the search increases linearly with the 
number LOLEPOPs

▪ Even large and complex queries (with around 500 LOLEPOPs) can be 
processed efficiently by our tool (less than 1400 milliseconds)
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Performance and Scalability Study
Number of Recommendations in Knowledge Base 

▪ OptImatch has linear dependency over the number of 
recommendations in the knowledge base

▪ Process a 1000 query workload against 1000 problem patterns and 
recommendations in around 3hr30min 
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Comparative User Study

▪ OptImatch drastically reduces the time to search for a pattern

▪ OptImatch does not only perform significantly faster than a manual 
search but it also guarantees correctness.
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Current Work

▪ Extension of OptImatch
– Automatically discover, based on previously knowledge, of the best QEP to be 

applied to a given query
– Automatically recommendations such as changing database configuration in 

order to improve performance

▪ Knowledge Base
– Information about QEP and queries

▪ Matching similarities
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Current Work

▪ Normalization
– Reduction of data redundancy

▪ 3 main pieces:
– BaseData (tables and columns)
– LinkData (sql) → Ex: tables being joined, predicates used
– Knowledge Base (our current RDF)
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Current Work

▪ Old OptImatch: 894 ms

▪ New OptImatch: 1.52 ms
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▪ EDBT
– G. Damasio, P. Mierzejewski, J. Szlichta and C. Zuzarte: Query 

Performance Problem Determination with Knowledge Base in Semantic 
Web System OptImatch. EDBT 2016, 515-526

▪ ICDE
– G. Damasio, P. Mierzejewski, J. Szlichta and C. Zuzarte: OptImatch: 

Semantic Web System for Query Problem Determination. IEEE ICDE 
2016, 1334-1337

Publications
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