
© 2010 IBM Corporation

Graph Databases

Guilherme Fetter Damasio

University of Ontario Institute of Technology and
IBM Centre for Advanced Studies

© 2010 IBM Corporation

IBM Power Systems

Outline

▪ Introduction

▪ Relational Database

▪ Graph Database

▪ Our Research

2

© 2010 IBM Corporation

IBM Power Systems

Introduction

▪ Data is everywhere
– And it keeps increasing

3

© 2010 IBM Corporation

IBM Power Systems

Introduction

4

© 2010 IBM Corporation

IBM Power Systems

Introduction

▪ How can we store all this data?
– Database

5

Edgar Codd invents the Relational Data Model,
and its first order theory. IBM team implements
System R. 1970

© 2010 IBM Corporation

IBM Power Systems

Relational Database

▪ Relational Database
– Highly structured data
– Represents information in tables with rows (tuples) and columns (attributes)

▪ References to tuples in other table by referring to their primary-key
(PK) attributes via foreign-key (FK) columns

6

© 2010 IBM Corporation

IBM Power Systems

Relational Database

▪ Structured Query Language (SQL)
– Standard language for storing, manipulating and retrieving data in databases
– Very-high-level language
– Query optimization

▪ SQL example: find everyone who has a BMW car with max number
of passengers = 5

7

SELECT NAME FROM "PERSON"
WHERE (

PERSON."CAR_ID" IN (
SELECT ID FROM CAR
WHERE (

CAR."TYPE" = 'BMW' AND
CAR."MAX_NUM_OF_PAS" = 5)

)
)

);

© 2010 IBM Corporation

IBM Power Systems

Relational Database

▪ Joins are computed at query time by matching primary- and
foreign-keys of the many rows of the to-be-joined tables

▪ These operations are compute- and memory-intensive and have an
exponential cost

▪ A lot of the data available is naturally represented as graphs
– Data is related to resources
– Example: Social network data

8

© 2010 IBM Corporation

IBM Power Systems

Relational Database

9

How can we improve the
performance for this

type of data?

© 2010 IBM Corporation

IBM Power Systems

10

Graph Database

© 2010 IBM Corporation

IBM Power Systems

Graph Database

▪ Relationships are first-class citizens of the graph data model

▪ Graph databases enable us to build sophisticated models that map
closely to our problem domain

▪ Each node (entity or attribute) in the graph database model directly
and physically contains a list of relationship-records that represent
its relationships to other nodes

▪ Whenever you run the equivalent of a JOIN operation, the database
just uses this list and has direct access to the connected nodes,
eliminating the need for a expensive search / match computation

11

© 2010 IBM Corporation

IBM Power Systems

Graph Database

▪ Support a very flexible and fine-grained data model
– Manage rich domains in an easy and intuitive way

12

© 2010 IBM Corporation

IBM Power Systems

Graph Database

▪ Relational model to Graph model
– Each entity table is represented by a label on nodes

– Each row in a entity table is a node

– Columns on those tables become node properties

– Foreign keys become relationships

▪ Connections between nodes is directly link in such a way that

relating data becomes a simple matter of following connections

▪ Helps companies to make sense of the masses of connect data that

exist today

13

© 2010 IBM Corporation

IBM Power Systems

RDF

▪ Resource Description Framework (RDF)
– W3C specification
– Standard model for data interchange on the web

▪ The language description model allows the creation of statements
about a resource either by defining its relationships with other
resources or by defining its attributes

▪ Model is composed by triples
– Subject
– Predicate
– Object

▪ Subjects, predicates and objects are normally composed by a URI
and a node identification

14

© 2010 IBM Corporation

IBM Power Systems

RDF

▪ Example:

15

A person called "John" that has a car "BMW", where this car has
maximum number of passengers equals to "5".

© 2010 IBM Corporation

IBM Power Systems

RDF

▪ RDF can be represented in different formats:
– N-triples, turtle, RDF/XML, etc.

▪ N-triples representation of the previous example:

▪ RDF can also be represented by quadruples
– Graphs

16

<http://myLocal/person/John> <http://myLocal/hasName> “John” .
<http://myLocal/person/John> <http://myLocal/hasCarType> <http://myLocal/car/BMW> .
<http://myLocal/car/BMW> <http://myLocal/hasType> “BMW” .
<http://myLocal/car/BMW> <http://myLocal/hasMaxNumberOfPassengers>
“5”^^<http://www.w3.org/2001/XMLSchema#integer> .

http://mylocal/personName/John
http://mylocal/hasName
http://mylocal/hasType

© 2010 IBM Corporation

IBM Power Systems

▪ There is no direct way to represent properties in relationships, but
it can be accomplished by Blank Nodes

– Resource for which a URI or literal is not given

▪ Can make use of ontologies
– Vocabularies in a standard format
– Establishes the relationship between variables

▪ Ex: Integration of data coming from different publishers
– The data can be imported into a common RDF model, eg, by using converters

to the publishers' databases. However, one database may use the term
“author”, whereas the other may use the term “creator”

▪ To make the integration complete, and extra definition should be
added to the RDF data

– Describing the fact that the relationship described as “author” is the same as
“creator”

RDF

17

© 2010 IBM Corporation

IBM Power Systems

SPARQL

▪ SPARQL is a recursive acronym for SPARQL Protocol and RDF Query
Language

– Semantic query language for databases able to retrieve data stored in RDF
format

– Support by W3C

▪ SPARQL query that returns every person who has a BMW with
maximum number of passengers as 5

18

PREFIX predicate: <http://myLocal/>
SELECT ?name
WHERE
{

?x predicate:hasName ?name .
?x predicate:hasCarType ?car .
?car predicate:hasType "BMW" .
?car predicate:hasMaxNumberOfPassengers 5

}

http://mylocal/

© 2010 IBM Corporation

IBM Power Systems

SPARQL

▪ Property paths
– elt* → zero or more occurrences of elt
– elt+ → one or more occurrences of elt
– elt? → A path of zero or one elt
– elt1 / elt2 → A sequence path of elt1, followed by elt2
– ^elt → Inverse path (object to subject)

19

PREFIX predicate: <http://myLocal/>
SELECT ?a ?b ?c
WHERE
{

?a predicate:hasType "NLJOIN" .
?a predicate:hasLeftChild+ ?b .
?b predicate:hasType "TBSCAN" .
?b predicate:hasGenericChild ?c .
?c predicate:hasType "BASEOB" .

}

http://mylocal/

© 2010 IBM Corporation

IBM Power Systems

Graph Database
Pros

▪ Flexibility
– The data captured can be easily changed and extended for additional

attributes and objects

▪ Data relationship exploration
– No join index lookup (just follow connections)
– Traverse millions of nodes per second
– "Which supplier provided the products owned by this group of customers?"

▪ Indexing
– Graph databases are naturally indexed by relationships (the strength of the

underlying model), providing faster access compared to relational data for
data

20

© 2010 IBM Corporation

IBM Power Systems

Graph Database
Cons

▪ Not efficient at
– Processing high volumes of transactions
– Handling queries that span the entire database

▪ For most common graph databases, you have to store all the data
on one server

▪ Still fairly new compared to relational software, which has now
existed for a full generation

– It takes time to build a solid database market after all, regardless of data
model

▪ Some graph databases only offer the graph model, but the
underlying implementation is backed by a traditional

21

© 2010 IBM Corporation

IBM Power Systems

Relational Database x Graph Database

▪ Which one is better?
– Depends

22

Graph Database
If your domain entities have relationships to other entities, and your queries
rely on exploring those relationships

Relational Database
If you have large-volume analytics queries typical of data warehousing

© 2010 IBM Corporation

IBM Power Systems

Graph Database

23

"It is important to note the consequence of
using graph databases. The query latency in a
graph is proportional to how much of the graph
you choose to explore in a query, and is not
proportional to the amount of data stored."

Jim Webber, author of Graph Databases

© 2010 IBM Corporation

Query Performance Problem Determination with Knowledge Base
in Semantic Web System OptImatch

Guilherme Fetter Damasio

Jaroslaw Szlichta
Piotr Mierzejewski

Calisto Zuzarte

University of Ontario Institute of Technology and
IBM Centre for Advanced Studies

24

© 2010 IBM Corporation

IBM Power Systems

I. Background

II. Motivation

III. Architecture

IV. Transforming Diagnostic Data

V. Searching for Problem Patterns

VI. Providing Recommendations with Knowledge Base

VII. Experimental Study

VIII. Current Work

Outline

25

© 2010 IBM Corporation

IBM Power Systems

I. Background

II. Motivation

III. Architecture

IV. Transforming Diagnostic Data

V. Searching for Problem Patterns

VI. Providing Recommendations with Knowledge Base

VII. Experimental Study

VIII. Current Work

Outline

26

© 2010 IBM Corporation

IBM Power Systems

Background

▪ DB2
– Relational Database

Management System
– Query tuning
– Access Plan or Query

Execution Plan (QEP)

▪ QEP
– Contains a graphical format

portion represented in a tree
structure

– Contains a text format
portion

27

© 2010 IBM Corporation

IBM Power Systems

Background

28

Estimate number of rows
Type
ID
Cumulative total cost
Cumulative I/O cost

© 2010 IBM Corporation

IBM Power Systems

Background

▪

29

© 2010 IBM Corporation

IBM Power Systems

I. Background

II. Motivation

III. Architecture

IV. Transforming Diagnostic Data

V. Searching for Problem Patterns

VI. Providing Recommendations with Knowledge Base

VII. Experimental Study

VIII. Current Work

Outline

30

© 2010 IBM Corporation

IBM Power Systems

Motivation

▪ World's most valuable data remains in relational databases

▪ Complex analytic queries are a part of business operations

▪ Database systems are becoming more sophisticated

▪ Currently, tools for query performance problem determination
have limitations, so performance analysis is often best done by
manually analysis

31

© 2010 IBM Corporation

IBM Power Systems

Motivation

▪ Existing tools provide running recommendations for specific known
problems

– IBM® Optim Query Tuner®, IBM Optim Workload Tuner®, etc.

▪ Some characteristics of query execution plan (QEPs) are not easily
found by the use of search tools like “grep”

▪ Query performance problem determination is valuable inside IBM
support of business clients and database optimizer development
organization

▪ Optimizations and performance tuning strategies becomes
necessary to maintain the usability of the database

32

© 2010 IBM Corporation

IBM Power Systems

Motivation

▪ Incorporating OptImatch many optimization problems could be
automatically identified and resolved

▪ Text graph version of a snippet of a QEP from IBM DB2

▪ Problem: NLJOIN has inner stream
of type table scan (TBSCAN)

– Costly
– NLJOIN scans entire inner TABLE for

each rows from the outer TABLE

▪ Solution: create an index of the
target table of the TBSCAN

33

© 2010 IBM Corporation

IBM Power Systems

I. Background

II. Motivation

III. Architecture

IV. Transforming Diagnostic Data

V. Searching for Problem Patterns

VI. Providing Recommendations with Knowledge Base

VII. Experimental Study

VIII. Current Work

Outline

34

© 2010 IBM Corporation

IBM Power Systems

Architecture

35

© 2010 IBM Corporation

IBM Power Systems

I. Background

II. Motivation

III. Architecture

IV. Transforming Diagnostic Data

V. Searching for Problem Patterns

VI. Providing Recommendations with Knowledge Base

VII. Experimental Study

VIII. Current Work

Outline

36

© 2010 IBM Corporation

IBM Power Systems

Transforming Diagnostic Data

▪ Parser
– Define the property structure and property name for the RDF

▪ RDF
– Represents the QEP
– RDF is supported by DB2
– RDF does not enforce specific schema, but it can be enforced by specifying

predicates and establishing the relationship between LOLEPOPs

37

© 2010 IBM Corporation

IBM Power Systems

Transforming Diagnostic Data

▪ SPARQL
– RDF language
– Property paths
– Supported by DB2

▪ Handlers
– Result (Retrieval)
– Internal (Filtering)
– Relationship
– Blank Node

38

© 2010 IBM Corporation

IBM Power Systems

I. Background

II. Motivation

III. Architecture

IV. Transforming Diagnostic Data

V. Searching for Problem Patterns

VI. Providing Recommendations with Knowledge Base

VII. Experimental Study

VIII. Current Work

Outline

39

© 2010 IBM Corporation

IBM Power Systems

Searching for Problem Patterns

▪ Web-based graphical interface

▪ Upload Files

▪ Properties and relationship
between nodes

40

▪ Pattern #1 example
(High read cost)

– (i) is of type “NLJOIN”
– (ii) outer input stream of type “ANY” and cardinality > 1
– (iii) has inner input stream of type “TBSCAN”
– (iv) inner input stream has cardinality > 100
– (v) “TBSCAN” has generic input stream of type “BASE OB”

▪ Solution
– Create an index in the table read by the TBSCAN

© 2010 IBM Corporation

IBM Power Systems

Searching for Problem Patterns

41

© 2010 IBM Corporation

IBM Power Systems

I. Background

II. Motivation

III. Architecture

IV. Transforming Diagnostic Data

V. Searching for Problem Patterns

VI. Providing Recommendations with Knowledge Base

VII. Experimental Study

VIII. Current Work

Outline

42

© 2010 IBM Corporation

IBM Power Systems

Providing Recommendations with Knowledge Base

▪ Populated with predetermined problem patterns and associated
query plan recommendations

▪ Problem pattern → SPARQL query with result handlers

▪ Use of alias to specify a result handler

▪ Use of handlers tagging

▪ Static and dynamic components

▪ Use of “@” sign to represent a result handler

43

© 2010 IBM Corporation

IBM Power Systems

Providing Recommendations with Knowledge Base

▪ Use of 1 handler: @TOP

▪ Use of multiple handlers: [@TOP, @BASE4]

▪ Limit number of occurrences: [@TOP, @BASE4]:1
– List only 1 result

▪ Use of helper functions

▪ List columns: @TOP.listColumns(“PREDICATE”)
– List columns from an alias handler in the predicate

▪ Example: “Create index on table @BASE4 on columns
@TOP.listColumns("INPUT”)”

44

© 2010 IBM Corporation

IBM Power Systems

Providing Recommendations with Knowledge Base

45

© 2010 IBM Corporation

IBM Power Systems

Providing Recommendations with Knowledge Base

▪ OptImatch can provide advanced guidance with variety of
recommendations

▪ Pattern #2 (estimation of the execution cost by optimizer)
– (i) LOLEPOP of type index Scan (IXSCAN) or table scan (TBSCAN)
– (ii) has cardinality < 0.001
– (iii) has a generic input stream of type Base Object (BASE OB)
– (iv) the generic input stream has cardinality > 100000

▪ Recommendation:
– Create column group statistics (CGS) on equality local predicate columns and

CGS on equality join predicate columns of the Base Object.

46

© 2010 IBM Corporation

IBM Power Systems

Providing Recommendations with Knowledge Base

▪ Pattern #3 (poor join order)
– (i) LOLEPOP of type JOIN
– (ii) has a descendant outer input stream of type JOIN
– (ii) has a descendant inner input stream of type JOIN
– (iii) the descendant outer input stream join is a Left Outer Join
– (iv) descendant inner input stream join is a Left Outer Join

▪ Recommendation:
– Rewrite the query from the following structure (T1 LOJ T2) … JOIN … (T3 LOJ

T4) to ((T1 LOJ T2).... JOINT3) LOJ T4 as the rewritten query is more
efficient

▪ With all provided patterns and recommendations, a user, with no
particular knowledge or training, can run a general test of all
predetermined problem patterns against a given query workload

47

© 2010 IBM Corporation

IBM Power Systems

I. Background

II. Motivation

III. Architecture

IV. Transforming Diagnostic Data

V. Searching for Problem Patterns

VI. Providing Recommendations with Knowledge Base

VII. Experimental Study

VIII. Current Work

Outline

48

© 2010 IBM Corporation

IBM Power Systems

Experimental Study

▪ Focuses on 3 objectives:
– Effectiveness using real IBM customer query workload.
– Scalability and performance:

• Sizes of the query workload,
• Number of LOLEPOPs
• Number of recommendations in the knowledge base.

– Comparative study with manual search for patterns by experts
• Time and precision

▪ Patterns used through experimental study:
– Pattern #1
– Pattern #2
– Pattern #3

49

© 2010 IBM Corporation

IBM Power Systems

Performance and Scalability Study
Size of Query Workload

▪ Search increases linearly with the number of QEP files

▪ For 1000 QEPs, time to perform the search is less than 30 seconds

▪ Pattern #3 takes longer because it is more complex, containing
descendant nodes (using recursion to analyze)

50

© 2010 IBM Corporation

IBM Power Systems

Performance and Scalability Study
Number of LOLEPOPs

▪ For patterns #1 and #2 the search increases linearly with the
number LOLEPOPs

▪ Even large and complex queries (with around 500 LOLEPOPs) can be
processed efficiently by our tool (less than 1400 milliseconds)

51

© 2010 IBM Corporation

IBM Power Systems

Performance and Scalability Study
Number of Recommendations in Knowledge Base

▪ OptImatch has linear dependency over the number of
recommendations in the knowledge base

▪ Process a 1000 query workload against 1000 problem patterns and
recommendations in around 3hr30min

52

© 2010 IBM Corporation

IBM Power Systems

Comparative User Study

▪ OptImatch drastically reduces the time to search for a pattern

▪ OptImatch does not only perform significantly faster than a manual
search but it also guarantees correctness.

53

© 2010 IBM Corporation

IBM Power Systems

I. Background

II. Motivation

III. Architecture

IV. Transforming Diagnostic Data

V. Searching for Problem Patterns

VI. Providing Recommendations with Knowledge Base

VII. Experimental Study

VIII. Current Work

Outline

54

© 2010 IBM Corporation

IBM Power Systems

Current Work

▪ Extension of OptImatch
– Automatically discover, based on previously knowledge, of the best QEP to be

applied to a given query
– Automatically recommendations such as changing database configuration in

order to improve performance

▪ Knowledge Base
– Information about QEP and queries

▪ Matching similarities

55

© 2010 IBM Corporation

IBM Power Systems

Current Work

▪ Normalization
– Reduction of data redundancy

▪ 3 main pieces:
– BaseData (tables and columns)
– LinkData (sql) → Ex: tables being joined, predicates used
– Knowledge Base (our current RDF)

56

© 2010 IBM Corporation

IBM Power Systems

Current Work

▪ Old OptImatch: 894 ms

▪ New OptImatch: 1.52 ms

57

© 2010 IBM Corporation

IBM Power Systems

▪ EDBT
– G. Damasio, P. Mierzejewski, J. Szlichta and C. Zuzarte: Query

Performance Problem Determination with Knowledge Base in Semantic
Web System OptImatch. EDBT 2016, 515-526

▪ ICDE
– G. Damasio, P. Mierzejewski, J. Szlichta and C. Zuzarte: OptImatch:

Semantic Web System for Query Problem Determination. IEEE ICDE
2016, 1334-1337

Publications

58

