Data Mining and Learning

Jarek Szlichta http://data.science.uoit.ca/

What is Data Mining?

- Approximate terminology, though there is some overlap:
 - Data(base) operations
 - Executing specific operations or queries over data
 - Data mining
 - Looking for patterns in data
 - Machine Learning
 - using data to make inferences or predictions

Big Data, Big World..

- Early data mining success stories
 - Victoria's Secret
 - Walmart
 - "Beer and diapers"

Data Mining Techniques

- We will cover data mining on market-basket data
 - with patterns being frequent itemset and finding association rules
- Examples of other types of data:
 - graphs (of the node-and-link variety),
 - streams,
 - text (known as "text mining")
- Examples of other types of patterns:
 - looking for similar items,
 - Iooking for structural patterns in large networks
 - Iooking for clusters and/or anomalies

Market Basket Analysis

Market-Basket Data

- Originated with retail data, specifically grocery stores, where a market basket is a set of items purchased together
- More generally, market basket data is any data where there is
 - a fixed (possibly very large) set of items,
 - and a (usually large) number of transactions consisting of one or more of the items

Market Basket Data Examples

- Items: groceries, Transaction: grocery cart
- Items: online goods, Transaction: (virtual) shopping cart
- Items: college courses, Transaction: student transcript
- Items: students, Transaction: party
- Items: movies, Transaction: person
- Items: symptoms, Transaction: patient
- Items: words, Transaction: document

Frequent Itemsets

Sets of items that occur together frequently in transactions

- How large is a "set"?
- What does frequently mean?
- Look for sets containing at least min-set-size items, may also constrain max-set-size
 - Support: # transactions containing set / total # transactions
 - Look for sets with support > support-threshold

Frequent Itemsets Example

Transactions

- T1: beer, eggs, milk
- T2: beer, diapers, milk
- T3: chips, eggs
- T4: eggs, milk
- T5: beer, chips, diapers, milk
- Assume min-set-size = 2, support-threshold = 0.3
 - Frequent itemsets?

Frequent Itemsets Example

Transactions

- T1: beer, eggs, milk
- T2: beer, diapers, milk
- T3: chips, eggs
- T4: eggs, milk
- T5: beer, chips, diapers, milk
- Assume min-set-size = 2, support-threshold = 0.3
 - Frequent itemsets?
 - Answer: beer/milk, beer/diapers, diapers/milk, eggs/milk, beer/diapers/milk

Computing Frequent Itemsets with SQL

- Table Shop(TID, item)
 - Frequent itemsets of two, support-threshold = 0.3
 - S1 and S2 are aliases to the same table Shop
 - Technique is based on self-join over table Shop

```
Select S1.item, S2.item
From Shop S1, Shop S2
Where S1.TID = S2.TID
and S1.item < S2.item
Group by S1.item, S2.item
Having count(*) >
 (Select count(distinct TID)*0.3
 From Shop)
```

Computing Frequent Itemsets with SQL

- Table Shop(TID, item)
 - Frequent itemsets of three, support-threshold = 0.3

Select S1.item,S2.item,S3.item
From Shop S1,Shop S2,Shop S3
Where S1.TID = S2.TID And S2.TID = S3.TID
And S1.item < S2.item
And S2.item < S3.item
Group By S1.item,S2.item,S3.item
Having count(*) >
 (Select count(distinct TID)*0.3

From Shop)

Association Rules

- Set1 → Set2: when Set1 occurs in a transaction,
 Set2 often occurs in the same transaction
- Commonly limit to looking for rules where Set2 is a single item
 - How large is Set1?
 - What does "often" mean?

Association Rules

- Look for sets Set1 containing at least min-set-size items, may also constrain max-set-size
- Confidence: # transactions containing Set1 and Set2
 / # transactions containing Set1
 - Look for sets with confidence > confidence threshold
- Still consider Support: # transactions containing Set1
 / total # transactions
 - Look for sets with support > support threshold (i.e., Set1 should be frequent itemset)

Association Rules Example

Transactions

- T1: beer, eggs, milk
- T2: beer, diapers, milk
- T3: chips, eggs
- T4: eggs, milk
- min-set-size = 1, max-set-size = 1, confidencethreshold = 0.5, support-threshold = 0.5
 - Association rules?

Association Rules Example

Transactions

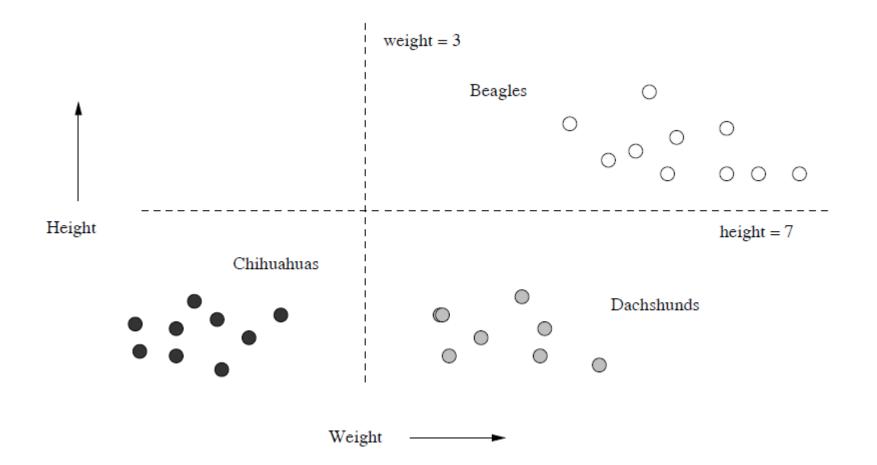
- T1: beer, eggs, milk
- T2: beer, diapers, milk
- T3: chips, eggs
- T4: eggs, milk
- min-set-size = 1, max-set-size = 1, confidencethreshold = 0.5, support-threshold = 0.5
 - Association rules?
 - For instance, Beer → Diapers, Beer → Milk, Eggs → Milk, Milk → Beer, Milk → Eggs, ...

Classification and Clustering

- Supervised: Create a model from wellunderstood training data, use it for inference or prediction about other data.
 - Examples: regression, classification
- Unsupervised: Try to understand the data, look for patterns or structure.
 - Examples: data mining, clustering
 - Also in-between approaches, such as semisupervised and active learning

Classification

- Goal: Given a set of feature values for an item not seen before, decide which one of a set of predefined categories the item belongs to
 - Customer purchases
 - features: age, income, gender, zipcode, profession;
 - categories: likelihood of buying (high, medium, low)
 - Medical diagnosis
 - features: age, gender, history, symptom-1-severity, symptom-2severity, test1result, test2result;
 - categories: diagnosis
 - Fraud detection in online purchases features:
 - item, volume, price, shipping, address;
 - categories: fraud or okay

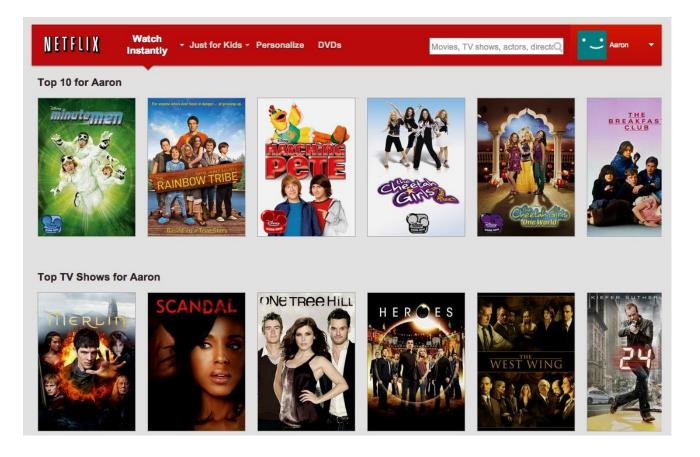

Chihuahua, Beagles, Dachshunds..

Learning Illustrative Example

- Plot the *height and weight* of dogs in three classes: Beagles, Chihuahuas, and Dachshunds.
- Each pair (x, y) in the training set consists of:
 - Feature vector x of the form [height, weight].
 - The associated label y is the variety of the dog.
- An example of a training-set pair would be ([5 inches, 2 pounds], Chihuahua).

Heights and Weights of Certain Dogs

Decision Function

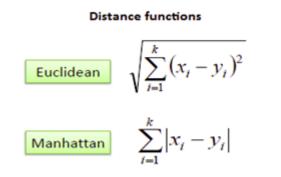

The algorithm that implements function f is:

if (height > 7) print Beagle
else if (weight < 3) print Chihuahua
else print Dachshund;</pre>

Is it supervised on unsupervised learning?

Netflix Suggestions

Computed based on watched movies



K Nearest Neighbors - Classification

- K nearest neighbors is an algorithm that stores all available cases and classifies new cases based on a similarity measure
 - (e.g., distance function).

KNN and Distance Functions

- A case is classified by a majority vote of its neighbors, with the case being assigned to the class most common amongst its K nearest neighbors measured by a distance function.
 - If K = 1, then the case is simply assigned to the class of its nearest neighbor.

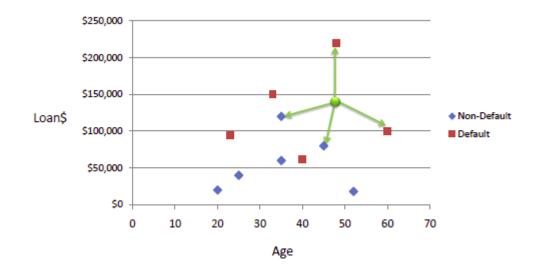
Hamming Distance

- It should also be noted that all two distance measures are only valid for continuous variables
 - In the instance of categorical variables the Hamming distance must be used (outputs 0 or 1)

Hamming Distance

$$D_{H} = \sum_{i=1}^{k} |x_{i} - y_{i}|$$
$$x = y \Longrightarrow D = 0$$
$$x \neq y \Longrightarrow D = 1$$

х	Y	Distance
Male	Male	0
Male	Female	1


Choosing K

Choosing the optimal value for K is best done by first inspecting the data

- In general, a larger K value is more precise as it reduces the overall noise but there is no guarantee
- Historically, the optimal K for most datasets has been between 3-10. That produces much better results than 1NN

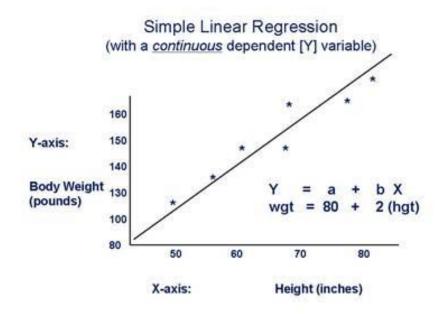
KNN Example

- Consider the following data concerning credit default. Age and Loan are two numerical variables (predictors) and Default is the target.
 - We can now use the training set to classify an unknown case (Age=48 and Loan=\$142,000) using Euclidean distance

KNN Example Solution

If K=1 then the nearest neighbor is the last case in the training set with Default=Y

Age	Loan	Default	Distance	
25	\$40,000	N	102000	
35	\$60,000	N	82000	
45	\$80,000	N	62000	
20	\$20,000	N	122000	
35	\$120,000	N	22000	2
52	\$18,000	N	124000	
23	\$95,000	Y	47000	
40	\$62,000	Y	80000	
60	\$100,000	Y	42000	3
48	\$220,000	Y	78000	
33	\$150,000	Y 🔶	8000	1
		T		
48	\$142,000	?		
Euclidean Distance	$D = \sqrt{(x_1 - y_1)}$	$(x_1)^2 + (x_2)^2$	$(y_2 - y_2)^2$	


D = Sqrt[(48-33)^2 + (142000-150000)^2] = 8000.01 >> Default=Y

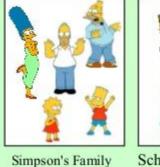
 With K=3, there are two Default=Y and one Default=N out of three closest neighbors. The prediction for the unknown case is again Default=Y

Classification using Logistic Regression

- Logistic regression uses training data to compute function f(x1,...,xn-1), where x1, ..., xn-1 are features, that gives probability of result xn being "yes"
 - Lots of hidden math..

Linear Regression Example

Clustering

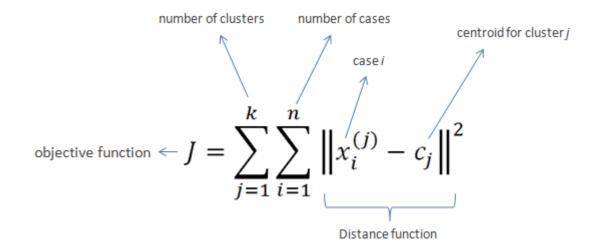

- Multidimensional feature space, distance metric between items
- Goal: Partition set of items into k groups (clusters) such that items within groups are "close" to each other
- Unsupervised, no training data

Clustering is Subjective

What is a natural grouping among these objects?

Clustering is subjective

School Employees

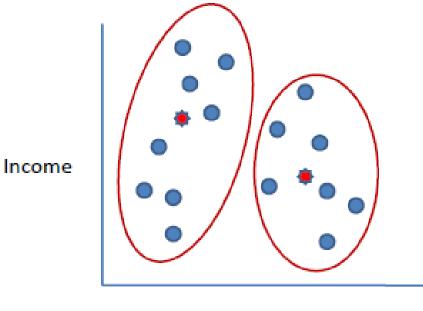


K-Means Clustering

- K-Means clustering intends to partition n objects into k clusters in which each object belongs to the cluster with the nearest mean
 - This method produces exactly k different clusters of greatest possible distinction
 - The best number of clusters k leading to the greatest separation (distance) is not known as a priori and must be computed from the data

K-Means Objective

The objective of K-Means clustering is to minimize total intra-cluster variance, or, the squared error function:



K-Means Algorithm

- Clusters the data into k groups where k is predefined
 - 1. Select k points at random as cluster centers
 - 2. Assign objects to their closest cluster center according to the *Euclidean distance* function
 - Calculate the centroid or mean of all objects in each cluster
 - 4. Repeat steps 2, 3 and 4 until the same points are assigned to each cluster in consecutive rounds

Clustering by Age and Income

Data clustered by age and income

Age

Example of Clustering

- Suppose we want to group the visitors to a website using just their age (a one-dimensional space) as follows:
 - 15,15,16,19,19,20,20,21,22,28,35,40,41,42,43,44, 60,61,65

Solution

- No change between iterations 3 and 4 has been noted.
- By using clustering, 2 groups have been identified 15-28 and 35-65
 - Initial centroids were chosen randomly

Initial clusters:

```
Centroid (C1) = 16 [16]

Centroid (C2) = 22 [22]

Iteration 1:

C1 = 15.33 [15,15,16]

C2 = 36.25 [19,19,20,20,21,22,28,35,40,41,42,43,44,60,61,65]

Iteration 2:

C1 = 18.56 [15,15,16,19,19,20,20,21,22]

C2 = 45.90 [28,35,40,41,42,43,44,60,61,65]

Iteration 3:

C1 = 19.50 [15,15,16,19,19,20,20,21,22,28]

C2 = 47.89 [35,40,41,42,43,44,60,61,65]

Iteration 4:

C1 = 19.50 [15,15,16,19,19,20,20,21,22,28]

C2 = 47.89 [35,40,41,42,43,44,60,61,65]
```


- Provide a useful application of data mining.
- What K-Means algorithm is used for?
 Describe how K-Means algorithm works.
- What is KNN algorithm used for? How to chose the right K?

Reading List

Review Slides! Recommended

- Association rule learning
 - https://en.wikipedia.org/wiki/Association_rule_learning
 - http://www.theregister.co.uk/2006/08/15/beer_diapers
 - http://infolab.stanford.edu/~ullman/mining/assocrules.pdf
- Classification and Clustering
 - http://www.saedsayad.com/k_nearest_neighbors.htm
 - http://www.saedsayad.com/mlr.htm
 - http://www.saedsayad.com/clustering_kmeans.htm

Optional

- http://infolab.stanford.edu/~ullman/mmds/bookL.pdf
- This book is used in CSCI 4030, Big Data Analytics; course plug-in