Python

Jarek Szlichta
http://data.science.uoit.ca/

Conditions

Python uses boolean variables to evaluate
conditions

The boolean values True and False are returned
when an expression is evaluated

variable assignment is done using a single equals

n_a

operator "=
comparison between two variables is done using the

—_u

double equals operator "==
The "not equals" operator is marked as "!="

X = 2
print x == 2 # prints out True
print x == 3 # prints out False

print x < 3 # prints out True

CSCI 2000U Scientific Data Analysis - Jarek Szlichta

Boolean Operators

The "and" and "or" boolean operators allow
building complex boolean expressions:

name = "John"
age = 23
1f name == "John" and age == 23:

print "Your name 1s John, and you are also
23 years old."

if name == "John" or name == "Rick":

print "Your name 1s either John or Rick."

CSCI 2000U Scientific Data Analysis - Jarek Szlichta

The "In" Operator

The "in" operator could be used to check if a
specified object exists within an iterable
object container
such as a list:
1f name in ["John", "Rick"]:

print "Your name 1s eilther

John or Rick."

CSCI 2000U Scientific Data Analysis - Jarek Szlichta

Code Blocks

Python uses indentation to define code blocks,
instead of brackets

1f <statement is true>:
<do something>

elif <another statement i1is true>:
else if
<do something else>

else:
<do another thing>

CSCI 2000U Scientific Data Analysis - Jarek Szlichta

Code Blocks Example

Test if x equals to 2

If x ==
print "x equals two!"
else:
print "x does not equal to two."

CSCI 2000U Scientific Data Analysis - Jarek Szlichta

The 'I1s' and ‘not' Operators

Unlike the"=="operator, the "is" operator
does not match the values of the variables,
but the instances themselves

x = [1,2,3]
Y = (1,2, 3]
print x == y # Prints out True

print x is y # Prints out False
Using "not" before a boolean expression

Inverts it

print not False # Prints out True

print (not False) == (False) # Prints out False

CSCI 2000U Scientific Data Analysis - Jarek Szlichta

Loops

There are two types of loops in Python, for and
while

For loops iterate over a given sequence
primes = [2, 3, 5, 7]
for prime 1n primes:
print prime
For loops can iterate over a sequence of

numbers using the "range" and "xrange"
functions

the range function returns a new list with numbers of

that specified range, whereas xrange returns an
iterator,

Iterator (xrange) is more efficient

CSCI 2000U Scientific Data Analysis - Jarek Szlichta

Xrange Example

Prints out the numbers 0,1,2,3,4
for x in xrange (5): # or range(5)
print x

Prints out 3,4,5
for x in xrange (3, 6): # or range (3, 6)
print x

Prints out 3,5,7
for x 1n xrange (3, 8, 2):
or range (3, 8, 2)

print x

CSCI 2000U Scientific Data Analysis - Jarek Szlichta

"while" Loops

While loops repeat as long as a certain boolean
condition is met:

Prints out 0,1,2,3,4

count = 0

while count < 5:
print count
This 1s the same as count = count + 1
count += 1

CSCI 2000U Scientific Data Analysis - Jarek Szlichta
10

"break" Statement

Break is used to exit a for/while loop
#Prints out 0,1,2,3,4
count = 0
while True:
print count
count += 1

1f count >= 5;:

break

CSCI 2000U Scientific Data Analysis - Jarek Szlichta
11

" continue" Statement

Continue is used to skip the current block

Prints out only odd numbers - 1,3,5,7,9
for x i1n xrange (10) :
Check if x 1s even
1f x % 2 ==
continue

print x

CSCI 2000U Scientific Data Analysis - Jarek Szlichta
12

Can We Use "else" Clause for Loops?

unlike languages like C,CPP.. we can
use else for loops

Prints out 0,1,2,3,4
#and then it prints count value reached 5

count=0
while (count<b) :
print count
count +=1
else:
print "count value reached %sd"
% (count)

CSCI 2000U Scientific Data Analysis - Jarek Szlichta
13

Functions

Functions are a convenient way to divide
your code into useful blocks

allowing us to order our code

make it more readable

reuse it and save some time
Also functions are a key way to define
interfaces so programmers can share their

code (e.g., GitHub)

CSCI 2000U Scientific Data Analysis - Jarek Szlichta
14

How do you write functions in Python?

Functions in python are defined using the block
keyword "def", followed with the function's
name as the block's name.

def my function():

print "Hello From My Function!"
Functions may

also receive arguments (variables passed from the
caller to the function).

return a value to the caller, using the keyword-
'return’

def sum two numbers(a, b):

return a + b

CSCI 2000U Scientific Data Analysis - Jarek Szlichta
15

How do you call functions in Python?

Write the function's name followed by (),
placing any arguments within the brackets
print a simple greeting

my function ()

after this line x will hold the wvalue 3!

X = sum two numbers (1l,2)

CSCI 2000U Scientific Data Analysis - Jarek Szlichta
16

Classes and Objects

Objects are an encapsulation of variables
and functions into a single entity

Classes are essentially a template to create your
objects

Objects get their variables and functions from
classes

CSCI 2000U Scientific Data Analysis - Jarek Szlichta
17

Basic Class

A basic class looks like this

class MyClass:
variable = "blah"
def function(self) :

print "Thils 1s a message 1nside
the class.”

To assign the above class(template) to an
object you would do the following:

myobjectx = MyClass ()

CSCI 2000U Scientific Data Analysis - Jarek Szlichta
18

Accessing Object Variables

To access the variable inside of the newly created
object "myobjectx” do the following:
myobjectx.variable
You can create multiple different objects that are
of the same class
myobjecty = MyClass ()
myobjecty.variable = "vyackity"
Then print out both values:
This would print "blah"
print myobjectx.varilable
This would print "vackity"
print myobjecty.varilable

CSCI 2000U Scientific Data Analysis - Jarek Szlichta

19

Accessing Object Functions

To access a function inside of an object you
use notation similar to accessing a variable:

myobjectx.function ()

The above would print out the message, "This
IS @ message inside the class.”

Dictionaries

A dictionary is a data type similar to arrays,
but works with keys and values instead of
indexes
Each value stored in a dictionary can be accessed
using a key, which is any type of object
a string,

a number,
a list, etc.

instead of using its index to address it.

CSCI 2000U Scientific Data Analysis - Jarek Szlichta
21

Storing Dictionaries

For example, a database of phone numbers could
be stored using a dictionary like this:

phonebook = {}

phonebook ["John"] = 938477566
phonebook ["Jack"] = 938377264
phonebook ["J111l"] = 947662781

Alternatively, a dictionary can be initialized with
the same values in the following notation:

phonebook = {
"John" : 9384775660,
"Jack" : 938377264,
"Jill" : 947662781

CSCI 2000U Scientific Data Analysis - Jarek Szlichta
22

Iterating over Dictonaries

Dictionaries can be iterated over

for name, number 1n phonebook.iteritems|() :
print "Phone number of %$s 1s %d"

o

% (name, number)

To remove a specified index, use either one

of the following notations
del phonebook["John"]

or

phonebook.pop ("John")

CSCI 2000U Scientific Data Analysis - Jarek Szlichta
23

Modules in Python are simply Python files
with the .py extension, which implement a
set of functions.

The first time a module is loaded into a
running Python script, it is initialized by
executing the code in the module once.

If another module in your code imports the same
module again, it will not be loaded twice but once

only

so local variables inside the module act as a "singleton" -
they are initialized only once

CSCI 2000U Scientific Data Analysis - Jarek Szlichta
24

Modules are imported from other modules
using the import command.

import the library
import urllib
use it

urllib.urlopen(...)
You can check out the full list of built-in

modules in the Python standard library
https://docs.python.org/2/library/

CSCI 2000U Scientific Data Analysis - Jarek Szlichta
25

Writing Modules

Writing Python modules is very simple.
To create a module of your own,
create a new .py file with the module name,

and then import it using the Python file name
(without the .py extension) using the import
command.

CSCI 2000U Scientific Data Analysis - Jarek Szlichta
26

Generators, List
Comprehensions, Regular
Expressions, Exceptions and
Serialization

Generators

Generators are used to create iterators

Generators are functions which return an iterable
set of items, one at a time

When an iteration over a set of item starts
using the for statement, the generator is run

Once the generator's function code reaches a
"yield" statement, the generator yields its
execution back to the for loop, returning a new
value from the set

CSCI 2000U Scientific Data Analysis - Jarek Szlichta
28

Example of Generator Function

Here is an example of a generator function
which returns 6 random integers:

import random

def lottery():
returns 6 numbers between 1 and 40
for 1 1n xrange (6) :

yvield random.randint (1, 40)

for random number in lottery():

print "And the next number is... %d!"

o)

% random number

CSCI 2000U Scientific Data Analysis - Jarek Szlichta
29

Sample Output

Output Window

number is... 21!
number is... 17!
number is... 2!
number is... 48!
number is... 7!
number is... 28!

CSCI 2000U Scientific Data Analysis - Jarek Szlichta

30

List Comprehensions

List Comprehensions is a very powerful tool

It creates a new list based on another list, in a
single, readable line

Let's say we need to create a list of integers
which specify the length of each word in a
certain sentence,

but only if the word is not the word "the".

Without List Comprehensions

sentence = "the quick brown fox jumps
over the lazy dog"

words = sentence.split()
word lengths = []
for word 1n words:

1f word != "the":
word lengths.append (len (word))

CSCI 2000U Scientific Data Analysis - Jarek Szlichta
32

With List Comprehension

With a list comprehension, we could simplify
this process to this notation:

sentence = "the quick brown fox jumps
over the lazy dog"

words = sentence.split/()

word lengths = [len(word) for word 1n
words i1if word != "the"]

CSCI 2000U Scientific Data Analysis - Jarek Szlichta
33

Fixed Function Arguments

Every function in Python receives a
predefined number of arguments, if declared
normally, like this:

def myfunction(first, second, third):

do something with the 3 wvariables

CSCI 2000U Scientific Data Analysis - Jarek Szlichta
34

Multiple Function Arguments

It is possible to declare functions which
receive a variable number of arguments,
using the following syntax:

def foo(first, second, third, *therest):

©)

print "First: Ss" % first

©)

print "Second: $s" % second
print "Third: %ss" %

third

print "And all the rest... %s"

% list (therest)

CSCI 2000U Scientific Data Analysis - Jarek Szlichta
35

Output

So calling foo(1,2,3,4,5) will print out:
First: 1
Second: 2
Third: 3
And all the rest... [4, 5]

CSCI 2000U Scientific Data Analysis - Jarek Szlichta
36

Regular Expressions

Regular Expressions (sometimes shortened
to regexp, regex, or re) are a tool for
matching patterns in text.

The applications for regular expressions are wide-
spread, but they are fairly complex

CSCI 2000U Scientific Data Analysis - Jarek Szlichta

Regular Expressions

An example regex is r'"*(From|To|Cc).*?python-
list@python.org”
the caret » matches text at the beginning of a line

the part with (From|To|Cc) means that the line has to
start with one of the words that are separated by the
pipe |.
That is called the OR operator, and the regex will match if the
line starts with any of the words in the group.
The .*? means to un-greedily match any number of
characters, except the newline \n character.
The un-greedy part means to match as few repetitions as
possible (match shortest possible string)
The . character means any non-newline character, the
* means to repeat O or more times, and the ?
character makes it un-greedy.

CSCI 2000U Scientific Data Analysis - Jarek Szlichta
38

So, the following lines would be matched by
that regex:

From: python-list@python.org

To: lasp]<,. python-list@python.org
A complete reference for the re syntax is
available at the python docs:

https://docs.python.org/3/library/re.html#tregular
-expression-syntax "RE syntax

CSCI 2000U Scientific Data Analysis - Jarek Szlichta
39

Exception Handling

When programming, errors happen.
It's just a fact of life...

Perhaps the user gave bad input..

Maybe a network resource was unavailable.. Maybe the
program ran out of memory..

Or the programmer may have even made a mistake!

CSCI 2000U Scientific Data Analysis - Jarek Szlichta
40

Exceptions

Python's solution to errors are exceptions
You might have seen an exception before:

>>> print a

Traceback (most recent call last):
File "<stdin>", line 1, 1n <module>
NameError: name 'a' 1s not defined

CSCI 2000U Scientific Data Analysis - Jarek Szlichta
41

Try/Exceptions Handling

But sometimes you do not want exceptions
to completely stop the program.

You might want to do something special when an
exception is raised

This is done in a try/except block

Suppose you're iterating over a list.

You need to iterate over 20 numbers, but the list is
made from user input, and might not have 20
numbers in it

After you reach the end of the list, you just want
the rest of the numbers to be interpreted asa 0

CSCI 2000U Scientific Data Analysis - Jarek Szlichta
43

Exception Handling Code

def do stuff with number (n):

print n
the 1list = (1, 2, 3, 4, 5)

for 1 1n range (20) :
try:
do stuff with number (the list[1])
Raised when accessing
a non-existing index of a list
except IndexError:
do stuff with number (0)

CSCI 2000U Scientific Data Analysis - Jarek Szlichta
44

Sets are lists with no duplicate entries.

print set ("my name 1s Eric and Eric 1s
my name".split())

This will print out a list containing "my",
"name", "is", "Eric", and finally "and".

Since the rest of the sentence uses words which
are already in the set, they are not inserted twice.

CSCI 2000U Scientific Data Analysis - Jarek Szlichta
45

Operations over Sets

Sets allow to calculate intersections and
differences
For example, say:

a = set(["Jake", "John", "Eric"])

b = set(["John", "Jill"])
To find out which members attended both
events, you may use the "intersection"
method:

>>> a.intersection (b)

set(['John'])

CSCI 2000U Scientific Data Analysis - Jarek Szlichta
46

Difference and Union

To find out which members attended only one
of the events, use the "symmetric_difference"
method:

>>> a.symmetric difference (b)

set (['Jill', 'Jake', 'Eric'])
To find out which members attended only one
event and not the other, use the "difference”

method:
>>> a.difference (b)
set (['Jake', 'Eric']

To receive a list of all participants, use the
"union” method:

>>> ag.union (b)

set(['Ji1ll', 'Jake', '"John', 'Eric'])

CSCI 2000U Scientific Data Analysis - Jarek Szlichta
47

Serialization

Serialization is the process of translating data
structures or object state into a format that can
be stored

for example, in a file or memory buffer, or transmitted

across a network connection link
Python provides built-in JSON libraries to
encode and decode JSON.

Example JSON object:

{"firstName":"John", "lastName":"Doe"}
In order to use the json module, it must first be
imported:

import json

There are two basic formats for JSON data. Either
in a string or the object data structure.

CSCI 2000U Scientific Data Analysis - Jarek Szlichta
48

Load and Dumps

To encode a data structure to JSON, use the
"dumps" method. This method takes an
object and returns a String (import json):

json string =

json.dumps ([1, 2, 3, "a", "b", "c"])

To load JSON back to a data structure, use the
"loads" method.

This method takes a string and turns it back into
the json object data structure:

#(1, 2, 3, u'a', u'b', u'c']
print json.loads (json string)

CSCI 2000U Scientific Data Analysis - Jarek Szlichta
49

Partial Functions

You can create partial functions in python by
using the partial function from the functools
library

Partial functions allow to derive a function with x
parameters to a function with fewer parameters

Import required:

from functools import partial

CSCI 2000U Scientific Data Analysis - Jarek Szlichta
50

Example

Example: from functools import partial

from functools import partial

def multiply(x,y): return x * y
create a new function
that multiplies by 2
dbl = partial (multiply, 2)
print dbl (4)

This code will return 8.

An important note:

the default values will start replacing variables from

the left. The 2 will replace x. y will equal 4 when dbl(4)
is called.

CSCI 2000U Scientific Data Analysis - Jarek Szlichta

51

Code Introspection

Code introspection is the ability to examine
classes, functions and keywords to know what
they are, what they do and what they know.

Python provides several functions and utilities for
code introspection

help()

dir() id()
type()
issubclass()
isinstance()

Reading List

Review Slides
Recommended

Python Tutorial
http://www.learnpython.org/

Optional

History and General Information
https://en.wikipedia.org/wiki/History of Python
https://www.python.org/doc/essays/comparisons

http://www.programmerinterview.com/index.php/general-
miscellaneous/whats-the-difference-between-a-compiled-
and-an-interpreted-language/

Documentation
https://docs.python.org/2/tutorial/

CSCI 2000U Scientific Data Analysis - Jarek Szlichta
53

Perform Exercise from the attached appendix

This is important if this is your first contact with
Python!

You can find and do all the attached exercises at:
http://www.learnpython.org/

CSCI 2000U Scientific Data Analysis - Jarek Szlichta
54

Exercise

Change the variables in the first section, so
that each if statement resolves as True.

Code Window

2 number = 18

3 second number = 18
first_array = [1 Output Window JlE{u=eiReliiiili

5 second_array = [1,2,3]

number » 15:
l.j_“

first_array:
llzll

len(second array) == 2:
gy

len(first array) + len{second array) == 5:
g

first array and first array[e] == 1:
e

not second number:
L 1] Ell

CSCI 2000U Scientific Data Analysis - Jarek Szlichta
55

Solution

Code Window

number = 16
second number = €

first_array = [1,2,3]
second array = [1,2]

)

number » 1G:
llj-ll

0O) N LA L Pl

first _array:
ll:ll

len{second_array) ==
ll3|l

CSCI 2000U Scientific Data Analysis - Jarek Szlichta
56

Exercise

Loop through and print out all even numbers from
the numbers list in the same order they are received.

Don't print any numbers that come after 237 in the

sequence
Output Window

Code Window

CSCI 2000U Scientific Data Analysis - Jarek Szlichta

Solution

Code Window

number in numbers:

number == 237:

number £ 2 == 1:

number

CSCI 2000U Scientific Data Analysis - Jarek Szlichta

Exercise

Add a function named list_benefits() that returns
the following list of strings: "More organized
code”, "More readable code", "Easier code
reuse”, "Allowing programmers to share and
connect code together “

Add a function named build_sentence(info)
which receives a single argument containing a
string and returns a sentence starting with the
given string and ending with the string " is a
benefit of functions!”

00U Scientific Data Analysis - Jarek Szlichta

Exercise

Code Window

list benefits():

build sentence(benefit):

name_ the benefits of functions():
list of benefits = list benefits()
benefit in list of benefits:
build sentence(benefit})

3 =
Fan T I OSSR o I ST Y

name_the benefits of functions()

Output Window Expected Output

More organized code is a benefit of functions!

More readable code is a benefit of functions!

Easier code reuse is a benefit of functions!

Allowing programmers to share and connect code together is a benefit of f

CSCI 2000U Scientific Data Analysis - Jarek Szlichta

60

Solution

Code Window

(T Q- L o TR o I S W N]

list benefits():

"More organized code”, "More readable code”,

build sentence(benefit):
"%5 is a benefit of functions!™ X% benefit

name the benefits of functions():
list of benefits = list benefits()
benefit in 115t of benefits:
build sentence(benefit)

e the benefits of functions()

CSCI 2000U Scientific Data Analysis - Jarek Szlichta

"Easier cod

61

Exercise

We have a class defined for vehicles.

Create two new vehicles called carl and car2.
Set carl to be a red convertible worth
S60,000 with a name of Fer, and car2 to be a
blue van named Jump worth $10,000

CSCI 2000U Scientific Data Analysis - Jarek Szlichta

Exercise

Code Window

Vehicle:
name = "™
kind = "car”
color
value 1 &
description{self):
desc_str = "%s is a %s %s worth $%5.2+."
% (self.name, self.color, self.kind, self.wvalue)
desc_str

S=N
D00 =W fa b

carl.description(}

Output Window Expected Output

Fer is a red convertible worth %686888.00.
Jump is a blue van worth $188686.88.

CSCI 2000U Scientific Data Analysis - Jarek Szlichta

63

Solution

Code Window

carl.
carl.
carl.

car2 = Vehicle()
car2.name = "Jump”
car2.color = "blue”
car2.kind = "van”
car2.value = 18688.068

carl.description{)
car2.description()

CSCI 2000U Scientific Data Analysis - Jarek Szlichta
64

Exercise

Add "Jake" to the phonebook with the phone
number 938273443, and remove lJill

Code Window

phonebook = {
. "John™
ll] a‘:kll
"Jill™

"Jake" in phonebook:

"Jake is listed in the phonebook.”
"Jill" not in phonebook:

"Jill is not listed in the phonebook.™

Output Window Expected Output

Jake is listed in the phonebook.
Jill is not listed in the phonebook.

CSCI 2000U Scientific Data Analysis - Jarek Szlichta

65

Solution

Code Window

1 phonebook =
“John" :
"Jack"” :
"Jil11™ :

}

phonebook[" Jake"]

phonebook["]111“]

“Jake”™ in phonebook:

“"Jake is listed in the phonebook."
“"Jill"™ not in phonebook:

“Jill is not listed in the phonebook.™

CSCI 2000U Scientific Data Analysis - Jarek Szlichta
66

Exercise

In this exercise, you will need to print an
alphabetically sorted list of all functions in the
re module, which contain the word find.

Code Window

Output Window Expected Output

["findall®, "finditer']

CSCI 2000U Scientific Data Analysis - Jarek Szlichta

67

Solution

Code Window

find members =
member in dir(re):
“find” in member:
tind members.append{member)

WO B0 =] Oh LA L R

sorted(find_members)

CSCI 2000U Scientific Data Analysis - Jarek Szlichta
68

Exercise

Write a generator function which returns the
Fibonacci series

First 10 elements
The first two numbers of the series is always
equal to 1, and each consecutive number
returned is the sum of the last two numbers

Use only 2 variables in the generator function

CSCI 2000U Scientific Data Analysis - Jarek Szlichta
69

Exercise

Code Window

fib():

types
type(fib()) == types.GeneratorType:
"Good, The fib function is a generator.”

(= O - T I S ey

counter = @
n in fib():
n
counter +=
counter =

Expected Output

is a generator.

CSCI 2000U Scientific Data Analysis - Jarek Szlichta
70

Solution

Code Window

[JCS s O W o [S I S By

tFpefflb{}} == types. EHFIHTGPTHPF
"Good, The fib function is a generator.”

counter = 8
n in fib():

CSCI 2000U Scientific Data Analysis - Jarek Szlichta
71

Exercise

In the exercise below, use the given lists to
print out a set containing all the participants
from event A which did not attend event B.

Code Window

1 a = ["Jake"”, "John", "Eric"]
2 b = ["John", "Jill"]

Output Window Expected Output

set({['Jake’, "Eric’'])

CSCI 2000U Scientific Data Analysis - Jarek Szlichta

72

Solution

Code Window

["Jake™, "John", "Eric"]
["John™, "Jill"]

set(a)
set(b)

= LA Pl R

A.difference(B)

CSCI 2000U Scientific Data Analysis - Jarek Szlichta

73

Exercise

The aim of this exercise is to print out the
JSON string with key-value pair "Me" : 800
added to it.

Code Window

add employee{salaries json, name, salary):

salaries json

WO 80 s~ LA

=
[an]

11 salaries = "{"Alfred” : 388, "Jane" : 488 }’

12 new salaries = add employee(salaries, "Me", 288)
13 decoded salaries = json.loads{new salaries)

14 decoded salaries["Alfred"]

15 decoded salaries["Jane"]

16 decoded salaries|["Me"]

Output Window Expected Qutput

CSCI 2000U Scientific Data Analysis - Jarek Szlichta

74

Solution

Code Window

add EMplGVFE{HaldllES json, name, salary):
salarie jﬁuﬂ.lﬂad aries]:ﬂn}
SElEFiES[ﬂdME] sal

(
:

5158
ary

json.dumps(salaries)

s = '{"Alfred” : 3e@, "Jane" : 4@@ }’
3 new salaries = add EmplquF{5alar ies, "Me",
d_EﬂdEd salaries = json.loads(new_salaries)
decoded salarie 5[‘Alfred”]
decoded salaries["Jane"]
decoded _salaries["Me"]

CSCI 2000U Scientific Data Analysis - Jarek Szlichta
75

Exercise

Edit the function provided by calling partial() and
replacing the first three variables in func().

Then print with the new partial function using only one
input variable so that the output equals 60.

Code Window

functools partial
func{u,v,w,x):

u*4 + v*3 + w*2 + x

Output Window Expected Output

68

CSCI 2000U Scientific Data Analysis - Jarek Szlichta

76

Solution

Code Window

functools partial
func{u,v,w,x):
u*4 + v¥3 + w*2 + X

p = partial{func,5,6,7)
p(8)

CSCI 2000U Scientific Data Analysis - Jarek Szlichta

Exercise

Fill in the foo function so they can receive a
variable amount of arguments (3 or more)

The foo function must return the amount of extra
arguments received.

Code Window

too(a, b, c):
|

foo(1,2,3,4) == 1:
"Good."™
foo{1,2,3,4,5) = 2:

"Better.™

Output Window Expected Qutput

Good .
Better.
Great.

W00~ W pd

[

Awesome !

CSCI 2000U Scientific Data Analysis - Jarek Szlichta
78

Solution

Code Window

foo{a, b, c, *args):
len{args)

foo(1,2,3,4) == 1:
"Good."™

foo{1,2,3,4,5) == 2:
"Better.

WD 00 =~ N LA L pa e

CSCI 2000U Scientific Data Analysis - Jarek Szlichta
79

Exercise

Fix all the exceptions

Code Window

actor = {"name”: "John Cleese", "rank": "awesome"}
actor["last _name"]

get_last name()
"All exceptions caught! Good job!"
“"The actor's last name is ¥s" % get_last _name()

(S T - RS R O S W A

(R

Output Window Expected Qutput

All exceptions caught! Good job!
The actor's last name is Cleese

CSCI 2000U Scientific Data Analysis - Jarek Szlichta

80

Solution

Code Window

actor = {"name": "John Cleese”, “"rank": "awesome"}

't _name():
actor["name”].split({)[1]

get last name()
“All exceptions caught! Good job!"™

0O~ O L L B

“The actor’'s last name is #s" % get last name()

CSCI 2000U Scientific Data Analysis - Jarek Szlichta
81

Exercise

Using a list comprehension, create a new list
called "newlist" out of the list "numbers",
which contains only the positive numbers
from the list, as integers.

Code Window

1 numbers = [34.6, -283.4, 44.9, 68.3
2 newlist = []
3

4 newlist

Qutput Window Expected Output

[34, 44, 68, 44, 12]

CSCI 2000U Scientific Data Analysis - Jarek Szlichta
82

Solution

Code Window

1 numbers = [34.6 283.4, 44.9, 68.3, -12.2, 44.6, 12.7]
? newlist = [i X ¥ in numbers X » 8]

newlist

CSCI 2000U Scientific Data Analysis - Jarek Szlichta

83

