
Jarek Szlichta

http://data.science.uoit.ca/

 Python is a straightforward language

 very simple syntax

 It encourages programmers to program
without boilerplate (prepared) code

CSCI 2000U Scientific Data Analysis - Jarek Szlichta
2

 Python is completely object oriented, and
not "statically typed“

 You do not need to declare variables before using
them, or declare their type

 Every variable in Python is an object

CSCI 2000U Scientific Data Analysis - Jarek Szlichta
3

 Python supports two types of numbers -
integers and floating point numbers

 To define an integer, use the following syntax:
myint = 7

 To define a floating point number, you may use
one of the following notations:
myfloat = 7.0

myfloat = float(7)

CSCI 2000U Scientific Data Analysis - Jarek Szlichta
4

 Strings are defined either with a single quote
or a double quote.

mystring = 'hello'

mystring = "hello"

 Using double quotes makes it easy to include
apostrophes

 whereas these would terminate the string if using
single quotes
mystring = "Don't worry about apostrophes"

CSCI 2000U Scientific Data Analysis - Jarek Szlichta
5

 Lists are very similar to arrays

 They can contain any type of variable,

 and they can contain as many variables as you
wish

 Lists in Python can also be iterated over in a
simple manner

CSCI 2000U Scientific Data Analysis - Jarek Szlichta
6

empty list

mylist = []

mylist.append(1)

mylist.append(2)

mylist.append(3)

print(mylist[0]) # prints 1

print(mylist[1]) # prints 2

print(mylist[2]) # prints 3

prints out 1,2,3

for x in mylist:

print x

CSCI 2000U Scientific Data Analysis - Jarek Szlichta
7

 Accessing an index which does not exist
generates an exception (an error)

mylist = [1,2,3]

print(mylist[10])

CSCI 2000U Scientific Data Analysis - Jarek Szlichta
8

 The addition, subtraction, multiplication, and
division operators can be used with numbers

number = 1 + 2 * 3 / 4.0

 Modulo (%) operator returns the integer
remainder of the division

remainder = 11 % 3

 Using two multiplication symbols makes a
power relationship

squared = 7 ** 2

cubed = 2 ** 3

CSCI 2000U Scientific Data Analysis - Jarek Szlichta
9

 Python supports concatenating strings using
the addition operator

helloworld = "hello" + " " + "world"

 Python also supports multiplying strings to
form a string with a repeating sequence:

 “hellohellohellohellohellohellohellohellohellohello”:

lotsofhellos = "hello" * 10

CSCI 2000U Scientific Data Analysis - Jarek Szlichta
10

 Lists can be joined with the addition operators:
even_numbers = [2,4,6,8]

odd_numbers = [1,3,5,7]

all_numbers = odd_numbers + even_numbers

 Just as in strings, Python supports forming new
lists with a repeating sequence using the
multiplication operator:

print [1,2,3] * 3

CSCI 2000U Scientific Data Analysis - Jarek Szlichta
11

 That prints out 12, because "Hello world!" is
12 characters long, including punctuation and
spaces

print len(astring)

 That prints out 4, because the location of the
first occurrence of the letter "o" is 4
characters away from the first character.

print astring.index("o")

 This counts the number of l's in the string.
Therefore, it should print 3.

print astring.count("l")

CSCI 2000U Scientific Data Analysis - Jarek Szlichta
12

 Python uses boolean variables to evaluate
conditions

 variable assignment is done using a single equals
operator "=“

 comparison between two variables is done using
the double equals operator "==“

x = 2

print x == 2 # prints out True

print x == 3 # prints out False

print x < 3 # prints out True

CSCI 2000U Scientific Data Analysis - Jarek Szlichta
13

 The "and" and "or" boolean operators allow
building complex boolean expressions:

name = "John"

age = 23

if name == "John" and age == 23:

print "Your name is John, and you are also

23 years old."

if name == "John" or name == "Rick":

print "Your name is either John or Rick."

CSCI 2000U Scientific Data Analysis - Jarek Szlichta
14

 The "in" operator could be used to check if a
specified object exists within an iterable
object container

 such as a list:

if name in ["John", "Rick"]:

print "Your name is either

John or Rick."

CSCI 2000U Scientific Data Analysis - Jarek Szlichta
15

 Python uses indentation to define code blocks,
instead of brackets

if <statement is true>:

<do something>

....

....

elif <another statement is true>:

else if

<do something else>

....

....

else:

<do another thing>

....

....

CSCI 2000U Scientific Data Analysis - Jarek Szlichta
16

 Test if x equals to 2
x = 2

If x == 2:

print "x equals two!"

else:

print "x does not equal to two."

CSCI 2000U Scientific Data Analysis - Jarek Szlichta
17

 There are two types of loops in Python, for
and while

 For loops iterate over a given sequence

primes = [2, 3, 5, 7]

for prime in primes:

print prime

CSCI 2000U Scientific Data Analysis - Jarek Szlichta
18

 While loops repeat as long as a certain boolean
condition is met:

Prints out 0,1,2,3,4

count = 0

while count < 5:

print count

This is the same as count = count + 1

count += 1

CSCI 2000U Scientific Data Analysis - Jarek Szlichta
19

 Break is used to exit a for/while loop
#Prints out 0,1,2,3,4

count = 0

while True:

print count

count += 1

if count >= 5:

break

CSCI 2000U Scientific Data Analysis - Jarek Szlichta
20

 Continue is used to skip the current block

Prints out only odd numbers - 1,3,5,7,9

for x in xrange(10):

Check if x is even

if x % 2 == 0:

continue

print x

CSCI 2000U Scientific Data Analysis - Jarek Szlichta
21

 unlike languages like C,CPP.. we can
use else for loops

Prints out 0,1,2,3,4

#and then it prints count value reached 5

count=0

while(count<5):

print count

count +=1

else:

print "count value reached %d"

%(count)

CSCI 2000U Scientific Data Analysis - Jarek Szlichta
22

 Functions are a convenient way to divide
your code into useful blocks

 allowing us to order our code

 make it more readable

 reuse it and save some time

 Also functions are a key way to define
interfaces so programmers can share their
code (e.g., GitHub)

CSCI 2000U Scientific Data Analysis - Jarek Szlichta
23

 Functions in python are defined using the block
keyword "def", followed with the function's
name as the block's name.

def my_function():

print "Hello From My Function!"

 Functions may
 also receive arguments (variables passed from the

caller to the function).

 return a value to the caller, using the keyword-
'return‘

def sum_two_numbers(a, b):

return a + b

CSCI 2000U Scientific Data Analysis - Jarek Szlichta
24

 Write the function's name followed by (),
placing any arguments within the brackets

print a simple greeting

my_function()

after this line x will hold the value 3!

x = sum_two_numbers(1,2)

CSCI 2000U Scientific Data Analysis - Jarek Szlichta
25

 Objects are an encapsulation of variables
and functions into a single entity

 Classes are essentially a template to create your
objects

 Objects get their variables and functions from
classes

CSCI 2000U Scientific Data Analysis - Jarek Szlichta
26

 A basic class looks like this

class MyClass:

variable = "blah"

def function(self):

print "This is a message inside

the class."

 To assign the above class(template) to an
object you would do the following:

myobjectx = MyClass()

CSCI 2000U Scientific Data Analysis - Jarek Szlichta
27

 To access the variable inside of the newly created
object "myobjectx" do the following:

myobjectx.variable

 You can create multiple different objects that are
of the same class

myobjecty = MyClass()

myobjecty.variable = "yackity"

 Then print out both values:
This would print "blah"

print myobjectx.variable

This would print "yackity"

print myobjecty.variable

CSCI 2000U Scientific Data Analysis - Jarek Szlichta
28

 To access a function inside of an object you
use notation similar to accessing a variable:

myobjectx.function()

 The above would print out the message, "This
is a message inside the class."

CSCI 2000U Scientific Data Analysis - Jarek Szlichta
29

 A dictionary is a data type similar to arrays,
but works with keys and values instead of
indexes

 Each value stored in a dictionary can be accessed
using a key, which is any type of object

 a string,

 a number

instead of using its index to address it.

CSCI 2000U Scientific Data Analysis - Jarek Szlichta
30

 For example, a database of phone numbers
could be stored using a dictionary like this:

phonebook = {}

phonebook["John"] = 938477566

phonebook["Jack"] = 938377264

phonebook["Jill"] = 947662781

CSCI 2000U Scientific Data Analysis - Jarek Szlichta
31

 Dictionaries can be iterated over

for name, number in phonebook.iteritems():

print "Phone number of %s is %d"

% (name, number)

 To remove a specified index, use either one
of the following notations

del phonebook["John"]

or

phonebook.pop("John")

CSCI 2000U Scientific Data Analysis - Jarek Szlichta
32

 Modules in Python are simply Python files
with the .py extension, which implement a
set of functions

CSCI 2000U Scientific Data Analysis - Jarek Szlichta
33

 Modules are imported from other modules
using the import command.

import the library

import urllib

use it

urllib.urlopen(...)

 You can check out the full list of built-in
modules in the Python standard library

 https://docs.python.org/2/library/

CSCI 2000U Scientific Data Analysis - Jarek Szlichta
34

 Writing Python modules is very simple.
 To create a module of your own,

 create a new .py file with the module name,

 and then import it using the Python file name
(without the .py extension) using the import
command.

CSCI 2000U Scientific Data Analysis - Jarek Szlichta
35

 List Comprehensions is a very powerful tool

 It creates a new list based on another list, in a
single, readable line

 Let's say we need to create a list of integers
which specify the length of each word in a
certain sentence,

 but only if the word is not the word "the".

CSCI 2000U Scientific Data Analysis - Jarek Szlichta
36

sentence = "the quick brown fox jumps

over the lazy dog"

words = sentence.split()

word_lengths = []

for word in words:

if word != "the":

word_lengths.append(len(word))

CSCI 2000U Scientific Data Analysis - Jarek Szlichta
37

 With a list comprehension, we could simplify
this process to this notation:

sentence = "the quick brown fox jumps

over the lazy dog"

words = sentence.split()

word_lengths = [len(word) for word in

words if word != "the"]

CSCI 2000U Scientific Data Analysis - Jarek Szlichta
38

 Every function in Python receives a
predefined number of arguments, if declared
normally, like this:

def myfunction(first, second, third):

do something with the 3 variables

...

CSCI 2000U Scientific Data Analysis - Jarek Szlichta
39

 It is possible to declare functions which
receive a variable number of arguments,
using the following syntax:
def foo(first, second, third, *therest):

print "First: %s" % first

print "Second: %s" % second

print "Third: %s" %

third

print "And all the rest... %s"

% list(therest)

CSCI 2000U Scientific Data Analysis - Jarek Szlichta
40

 So calling foo(1,2,3,4,5) will print out:

First: 1

Second: 2

Third: 3

And all the rest... [4, 5]

CSCI 2000U Scientific Data Analysis - Jarek Szlichta
41

 Regular Expressions (sometimes shortened
to regexp, regex, or re) are a tool for
matching patterns in text.

 The applications for regular expressions are wide-
spread, but they are fairly complex

CSCI 2000U Scientific Data Analysis - Jarek Szlichta
42

 An example regex is
r"^(From|To|Cc).*?python-list@python.org“

 the caret ^ matches text at the beginning of a line

 the part with (From|To|Cc) means that the line
has to start with one of the words that are
separated by the pipe |.

 That is called the OR operator, and the regex will match if
the line starts with any of the words in the group.

 The .*? means to match any number of characters,
except the newline \n character.

CSCI 2000U Scientific Data Analysis - Jarek Szlichta
43

 So, the following lines would be matched by
that regex:

 From: python-list@python.org

 To: !asp]<,. python-list@python.org

 A complete reference for the re syntax is
available at the python docs:

 https://docs.python.org/3/library/re.html#regular
-expression-syntax "RE syntax

CSCI 2000U Scientific Data Analysis - Jarek Szlichta
44

 When programming, errors happen.

 It's just a fact of life...

 Perhaps the user gave bad input..

 Maybe a network resource was unavailable.. Maybe the
program ran out of memory..

 Or the programmer may have even made a mistake!

CSCI 2000U Scientific Data Analysis - Jarek Szlichta
45

 Python's solution to errors are exceptions
>>> print a

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

NameError: name 'a' is not defined

CSCI 2000U Scientific Data Analysis - Jarek Szlichta
46

 But sometimes you do not want exceptions
to completely stop the program.

 You might want to do something special when an
exception is raised

 This is done in a try/except block

CSCI 2000U Scientific Data Analysis - Jarek Szlichta
47

 Suppose you're iterating over a list.

 You need to iterate over 20 numbers, but the list is
made from user input, and might not have 20
numbers in it

 After you reach the end of the list, you just want
the rest of the numbers to be interpreted as a 0

CSCI 2000U Scientific Data Analysis - Jarek Szlichta
48

def do_stuff_with_number(n):

print n

the_list = (1, 2, 3, 4, 5)

for i in range(20):

try:

do_stuff_with_number(the_list[i])

Raised when accessing

a non-existing index of a list

except IndexError:

do_stuff_with_number(0)

CSCI 2000U Scientific Data Analysis - Jarek Szlichta
49

 Sets are lists with no duplicate entries.

print set("my name is Eric and Eric is

my name")

 This will print out a list containing "my",
"name", "is", "Eric", and finally "and".

 Since the rest of the sentence uses words which
are already in the set, they are not inserted twice.

CSCI 2000U Scientific Data Analysis - Jarek Szlichta
50

 Sets allow to calculate intersections and
differences

 For example, say:
a = set(["Jake", "John", "Eric"])

b = set(["John", "Jill"])

 To find out which members attended both
events, you may use the "intersection"
method:

>>> a.intersection(b)

set(['John'])

CSCI 2000U Scientific Data Analysis - Jarek Szlichta
51

 To find out which members attended only one
of the events, use the "symmetric_difference"
method:

>>> a.symmetric_difference(b)

set(['Jill', 'Jake', 'Eric'])

 To find out which members attended only one
event and not the other, use the "difference"
method:

>>> a.difference(b)

set(['Jake', 'Eric']

 To receive a list of all participants, use the
"union" method:

>>> a.union(b)

set(['Jill', 'Jake', 'John', 'Eric'])

CSCI 2000U Scientific Data Analysis - Jarek Szlichta
52

 You can create partial functions in python by
using the partial function from the functools
library

 Partial functions allow to derive a function with x
parameters to a function with fewer parameters

 Import required:
from functools import partial

CSCI 2000U Scientific Data Analysis - Jarek Szlichta
53

 Example: from functools import partial
 from functools import partial

def multiply(x,y): return x * y

create a new function

that multiplies by 2

dbl = partial(multiply,2)

print dbl(4)

 This code will return 8.
 An important note:

 the default values will start replacing variables from
the left. The 2 will replace x. y will equal 4 when dbl(4)
is called.

CSCI 2000U Scientific Data Analysis - Jarek Szlichta
54

 Review Slides
 Recommended

 Python Tutorial
 http://www.learnpython.org/

 Optional
 History and General Information

 https://en.wikipedia.org/wiki/History_of_Python

 https://www.python.org/doc/essays/comparisons

 http://www.programmerinterview.com/index.php/general-
miscellaneous/whats-the-difference-between-a-compiled-
and-an-interpreted-language/

 Documentation
 https://docs.python.org/2/tutorial/

CSCI 2000U Scientific Data Analysis - Jarek Szlichta

55

