Clustering Analysis

Jarek Szlichta http://data.science.uoit.ca/

Cluster Analysis: Basic Concepts and Methods

- Cluster Analysis: Basic Concepts
- Partitioning Methods
- Hierarchical Methods
- Summary

What is Clustering?

- Group data into clusters
 - the points in one group are similar to each other
 - and are as different as possible from the points in other groups
 - Unsupervised learning: no predefined classes

Examples of Clustering Applications

• Marketing:

 Help marketers discover distinct groups in their customer bases, and then use this knowledge to develop targeted marketing programs

Image processing:

- Soil scientists filter trees from background
- Genomics:
 - Group genes to predict possible functions of genes with unknown function

City-planning:

- Identifying groups of houses according to their house type, value, and geographical location
- WWW:
 - Cluster web documents; e.g., politics, sports, news etc.

Example with Image Processing

Filtering real images

- Images of trees taken in near-infrared band (NIR) and visible wavelength (VIS)
- 512x1024 pixels and each of them contains a pair of brightness values (NIR,VIS)

The images taken in NIR and VIS

The sunlit leaves, branches and shadows

Quality: What Is Good Clustering?

- A good clustering method will produce high quality clusters
 - high <u>intra-class</u> similarity: <u>cohesive</u> within clusters
 - Iow <u>inter-class</u> similarity: <u>distinctive</u> between clusters
- The <u>quality</u> of a clustering result depends on
 - The clustering method
 - The similarity measure used by the method
- The <u>quality</u> of a clustering method is measured by its ability to discover some or all of the <u>hidden</u> patterns

Measure the Quality of Clustering

- Dissimilarity/Similarity metric
 - Similarity is expressed in terms of a distance function, typically metric: d(i, j)
 - The definitions of distance functions are usually rather different for various variables: categorical and numerical etc. (e.g., Euclidean Distance, Manhattan Distance, Hamming Distance)

Requirements and Challenges

- Scalability (Performance)
- Ability to deal with different types of attributes
 - Numerical, binary, categorical, and mixture of these
- Interpretability and usability
- Others
 - Discovery of clusters with arbitrary shape
 - Ability to deal with noisy data
 - Insensitivity to input order
 - High dimensionality

Clustering Approaches

- Partitioning approach:
 - Construct various partitions and then evaluate them by some criterion, e.g., minimizing the distance to centroid
 - Typical methods: k-means, k-medoids, CLARA
- Hierarchical approach:
 - Create a hierarchical decomposition of the set of data (or objects) using some criterion
 - Typical methods: Diana, Agnes, CAMELEON
- Density-based approach:
 - Based on connectivity and density functions
 - Typical methods: DBSAN

Cluster Analysis: Basic Concepts and Methods

- Cluster Analysis: Basic Concepts
- Partitioning Methods
- Hierarchical Methods
- Density-Based Methods
- Grid-Based Methods
- Evaluation of Clustering
- Summary

Partitioning Algorithms: Basic Concept

- Partitioning method: Partition n objects into k clusters
 - Optimize the chosen partitioning criterion
- Global optimal: exhaustively enumerate all partitions (not tractable for large datasets)
- Heuristic methods: k-means and k-medoids algorithms
 - <u>k-means</u>: Each cluster is represented by the center of the cluster
 - <u>k-medoids</u> or PAM (Partition around medoids): Each cluster is represented by one of the objects in the cluster

The K-Means Clustering Method

- Arbitrarily choose k objects as the initial cluster center
- Until no change, do
 - (Re)assign each object to the cluster to which the object is the most similar, based on the mean value of the objects in the cluster
 - Update the cluster means, i.e., calculate the mean value of the objects for each cluster

An Example of *K-Means* Clustering

Comments on the K-Means Method

- <u>Strength</u>: *Efficient*: *O*(*tkn*), where *n* is # objects, *k* is # clusters, and *t* is # iterations. Normally, *k*, *t* << *n*.
 - Comparing: PAM: O(k(n-k)²), CLARA: O(ks² + k(n-k))
- <u>Comment:</u> Often terminates at a *local optimal*.
- Weakness
 - Applicable only to objects in a continuous n-dimensional space
 - In comparison, k-medoids can be applied to a wide range of data
 - Need to specify *k*, the *number* of clusters, in advance
 - Sensitive to noisy data and *outliers*

What Is the Problem of the K-Means Method?

- The k-means algorithm is sensitive to outliers !
 - Since an object with an extremely large value may substantially distort the distribution of the data
- K-Medoids: Instead of taking the mean value of the object in a cluster as a reference point, medoids can be used, which is the most centrally located object in a cluster

PAM: A Typical K-Medoids Algorithm

Total Cost = 20

The K-Medoid Clustering Method

- *K-Medoids* Clustering: Find *representative* objects (<u>medoids</u>) in clusters
 - PAM (Partitioning Around Medoids)
 - Starts from an initial set of medoids and iteratively replaces one of the medoids by one of the non-medoids if it improves the total distance of the resulting clustering
 - PAM works effectively for small data sets, but does not scale well for large data sets (due to the computational complexity)
- Efficiency improvement on PAM
 - CLARA: PAM on samples
- PAM is more robust than k-means in the presence of noise and outliers
 - Medoids are less influenced by outliers

Demonstration of PAM

Cluster the following data set of ten objects into two clusters
 i.e. k = 2.

- Initialize k centers
- Let us assume x₂ and x₈ are selected as medoids, so the centers are c₁ = (3,4) and c₂ = (7,4)
- Calculate distances to each center so as to associate each data object to its nearest medoid.
 - Cost is calculated using Manhattan distance

Costs to the nearest medoid are shown bold in the table

Cost (distance) to c ₁						
i	c ₁		Data objects (\mathbf{X}_i)		Cost (distance)	
1	3	4	2	6	3	
3	3	4	3	8	4	
4	3	4	4	7	4	
5	3	4	6	2	5	
6	3	4	6	4	3	
7	3	4	7	3	5	
9	3	4	8	5	6	
10	3	4	7	6	6	

Cost (distance) to c ₂						
i	c ₂		Data objects (\mathbf{X}_i)		Cost (distance)	
1	7	4	2	6	7	
3	7	4	3	8	8	
4	7	4	4	7	6	
5	7	4	6	2	3	
6	7	4	6	4	1	
7	7	4	7	3	1	
9	7	4	8	5	2	
10	7	4	7	6	2	

Then the clusters become:

- Cluster₁ = {(3,4)(2,6)(3,8)(4,7)}
- Cluster₂ = {(7,4)(6,2)(6,4)(7,3)(8,5)(7,6)}

$$\begin{aligned} \text{total cost} &= \{ \text{cost}((3,4),(2,6)) + \text{cost}((3,4),(3,8)) + \text{cost}((3,4),(4,7)) \} \\ &+ \{ \text{cost}((7,4),(6,2)) + \text{cost}((7,4),(6,4)) + \text{cost}((7,4),(7,3)) \\ &+ \text{cost}((7,4),(8,5)) + \text{cost}((7,4),(7,6)) \} \\ &= (3+4+4) + (3+1+1+2+2) \\ &= 20 \end{aligned}$$

- Select randomly one of the nonmedoids O'
- Let us assume O' = (7,3), i.e. x₇
- So now the medoids are c₁(3,4) and O'(7,3)
 - calculate the total cost involved

i		c ₁		Data objects (X_i)	
1	3	4	2	6	3
3	3	4	3	8	4
4	3	4	4	7	4
5	3	4	6	2	5
6	3	4	6	4	3
8	3	4	7	4	4
9	3	4	8	5	6
10	3	4	7	6	6
i		Ο'		Data objects (\mathbf{X}_i)	

i	Ο′		Data objects (\mathbf{X}_i)		(distance)
1	7	3	2	6	8
3	7	3	3	8	9
4	7	3	4	7	7
5	7	3	6	2	2
6	7	3	6	4	2
8	7	3	7	4	1
9	7	3	8	5	3
10	7	3	7	6	3

- Total cost is 22 (3 + 4 + 4 + 2 + 2 + 1 + 3 + 3)
- So moving to O' would be a bad idea, so the previous choice was better
- So we try other nonmedoids and found that our first choice was the best. So the configuration does not change and algorithm terminates here (i.e. there is no change in the medoids).
 - In practice it may happen some data points may shift from one cluster to another cluster depending upon their closeness to medoid!

Chapter 10. Cluster Analysis: Basic Concepts and Methods

- Cluster Analysis: Basic Concepts
- Partitioning Methods
- Hierarchical Methods
- Density-Based Methods
- Grid-Based Methods
- Evaluation of Clustering
- Summary

Hierarchical Clustering

- Iteratively merge or split clusters to form a tree of clusters
 - Two types
 - Agglomerative (bottom-up): merge clusters iteratively
 - Start by placing each object in its own cluster
 - Merge these small clusters into larger and larger clusters
 - until all objects are in a single cluster
 - Divisive (top-down): split a cluster iteratively
 - Start with all objects in one cluster and subdivide them into smaller pieces

Hierarchical Clustering

 Use distance matrix as clustering criteria. This method does not require the number of clusters *k* as an input, but needs a termination condition

AGNES (Agglomerative Nesting)

- Implemented in statistical packages, e.g., Splus
- Use the single-link method (see slide 42)
- Merge nodes that have the least dissimilarity
- Go on in a non-descending fashion
- Eventually all nodes belong to the same cluster

Dendrogram: Shows How Clusters are Merged

Decompose data objects into a several levels of nested partitioning (tree of clusters), called a <u>dendrogram</u>

A <u>clustering</u> of the data objects is obtained by <u>cutting</u> the dendrogram at the desired level, then each <u>connected component</u> forms a cluster

DIANA (Divisive Analysis)

- Implemented in statistical analysis packages, e.g., Splus
- Inverse order of AGNES
- Eventually each node forms a cluster on its own

Distance between Clusters

- Single link: smallest distance between an element in one cluster and an element in the other, i.e., dist(K_i, K_j) = min(t_{ip}, t_{jq})
- Complete link: largest distance between an element in one cluster and an element in the other, i.e., dist(K_i, K_j) = max(t_{ip}, t_{jq})
- Average: avg distance between an element in one cluster and an element in the other, i.e., dist(K_i, K_j) = avg(t_{ip}, t_{jq})
- Centroid: distance between the centroids of two clusters, i.e., dist(K_i, K_j)
 = dist(C_i, C_j)
- Medoid: distance between the medoids of two clusters, i.e., dist(K_i, K_j) = dist(M_i, M_j)
 - Medoid: a chosen, centrally located object in the cluster

Strength and Limitations of Hierarchical Clustering

- Conceptually simple
- Theoretical properties are well understood
- Major weakness of agglomerative clustering methods
 - <u>Do not scale</u> well: time complexity of at least O(n²), where n is the number of total objects
- Integration of hierarchical & distance-based clustering
 - CHAMELEON: hierarchical clustering using dynamic modeling

CHAMELEON: Hierarchical Clustering Using Dynamic Modeling (1999)

- CHAMELEON:
- Measures the similarity based on a dynamic model
 - Two clusters are merged only if the *interconnectivity* and *closeness (proximity)* between two clusters are high *relative to* the internal interconnectivity of the clusters and closeness of items within the clusters
- Graph-based, and a two-phase algorithm
 - 1. Use a graph-partitioning algorithm: cluster objects into a large number of relatively small sub-clusters
 - Use an agglomerative hierarchical clustering algorithm: find the genuine clusters by repeatedly combining these subclusters

Overall Framework of CHAMELEON

CHAMELEON (Clustering Complex Objects)

- Cluster analysis groups objects based on their similarity and has wide applications
 - We have looked at different clustering algorithms
 - We examined their strengths and weaknesses

Reading List

Recommended

- Review Slides!
- Book: Jiawei Han, Micheline Kamber and Jian Pei, Data Mining -Concepts and Techniques, Morgan Kaufmann, Third Edition, 2011 (or 2nd edition)
 - <u>http://ccs1.hnue.edu.vn/hungtd/DM2012/DataMining BOOK.pdf</u>
 - Chapter: 7