

User Behavior Analysis in Big Data

Morteza(Mori) Zihayat

About Myself

- Mitacs Elevate Postdoctoral Research Fellow
 - Faculty of Information, University of Toronto
- Big Data Scientist
 - Spectrum Computing, IBM
 - Globe and Mail
- Main research interests
 - User modeling
 - Big Data Mining and Engineering
 - Finding Meaningful Patterns from Structured and Unstructured Big Data
 - Parallel and Distributed Data Mining
 - Social Network Analysis

Outline

- Introduction to Big Data
- User Modeling in Digital Media
- Depression Acuity Detection
- Cogniciti: An Online Brain Health Assessment
- Conclusion

Outline

- Introduction to Big Data
- User Modeling in Digital Media
- Depression Acuity Detection
- Cogniciti: An Online Brain Health Assessment
- Conclusion

Big Data

200 Gigabytes

THE SIZE OF A SINGLE SEQUENCED HUMAN GENOME

50 MILLION DEVICES

EACH DEVICE GENERATES 156 MB OF DATA PER DAY

0.5% ever analyzed and used

(MIT Technology review)

Big Data to Data Science

Data Scientist: The Sexiest Job of the 21st Century

Harvard Business Review Oct. 2012

(c) 2012 Biocomicals by Dr. Alper Uzon

Challenges

- Read/Write to disk is slow
 - Use multiple disks for parallel read
- Hardware failure
 - Single machine/disk failure
 - Keep multiple copies of data
- How do we merge data from different reads
 - Distributed processing or Hadoop MapReduce

Apache Hadoop

- Hadoop is an open-source software framework written in Java
 - Distributed storage
 - Computer clusters
- Two main components
 - HDFS (Hadoop Distributed File System)
 - Provides Distributed Storage
 - MapReduce (Distributed Data Processing Model)
 - Provides Distributed Processing

MapReduce

- MapReduce is a method for distributing a task across multiple nodes
- Consists of two phases
 - Map
 - Reduce
- The data is process in the form of <key,value>
- Each map task processes a discrete portion of the overall data
- After all Maps are complete, the system distributes the intermediate data to nodes which perform Reduce phase (aggregation)

Example: Word counting

- Counting the number of occurrences of each word in a large collection of documents
 - Input: documents
 - Output: <word, frequency>

Word Count Execution

Word Count Execution

Problem #1

- MapReduce I/O sandbags runtime for advanced analytics.
 - Must persist results after each pass through data
 - Advanced analytics often requires multiple passes through data

Example

• Goal: find best line separating two sets of points

Apache Spark

• A response to limitations in the

MapReduce

- UC Berkeley's AMP Lab (2009)
- Fully open sourced in 2010

← → C D spark.incubator.apache.org		= ■ ≘ ⊆ €
Download Related Projects - Documentation -	Community - FAQ	
Apache Spark is a fast and general er processing.	ngine for large-scale data	Latest News Spark 0.9.0 released me
Speed Run programs up to 100x faster than Hadoop MapReduce in memory, or 10x issuer on disk. Spark has an advanced DAG execution engine that supports cyclic data flow and in-memory computing. Base of Use Write applications quickly in Java, Scala or	$\int_{a}^{a} \int_{a}^{b} \int_{a$	2014) Spark 0.8.1 released (Dec 19, 2013) Spark Summit 2013 is a Wrap (Dec 15, 2013) Announcing the first Spark Summit: December 2, 2013 (Oct 08, 2013) Archive Download Spark Searce Shark (SQL) Spark Streaming MLib (machine learning)
		15/55 1

Spark Performance

Machine Learning

- 100x faster than MapReduce
- Queries (Shark)
 - 100x faster than Hive
- Streaming
 - **2X** throughput of Storm
- Graph (GraphX)
 - **10X** faster than MapReduce

Outline

- Introduction to Big Data
- User Modeling in Digital Media
- Depression Acuity Detection
- Cogniciti: An Online Brain Health Assessment
- Conclusion

The Globe and Mail

Digital Media

- Dataset Characteristics:
 - Attribute: 246
 - Year: 2014-2015
 - Size: 2,842 GB
 - > Year 2014 (Jan-Jul):
 - Number of Records: 264,735,412
 - Number of Visits: 51,748,518
 - Number of Users: 19,760,853

Preprocessing

- Data Preprocessing and Cleaning
 - Filtering out irrelevant hits
 - Extracting the user types
 - Extracting the event of interest
 - Computing the time spent
 - Roll-up form hit to visit and the user
 - Converting to expressive format (i.e., json)

18/11/2016

• ...

Frequency-based News Recommendation

- News articles are not independent
 - Pattern(behavior): a list of visited articles
 - Finding sets of co-occurrence news articles

Frequent Pattern Mining

- Frequent Pattern Mining (FPM)
 - FPM is a fundamental research topic in data mining
 - Example application
 - Discover sets of items (i.e., itemsets) that are frequently purchased together by customers

TID	Transaction	
T_1	{Bread, Milk}	
<i>T</i> ₂	{Bread, Milk}	
<i>T</i> ₃	{Bread, Milk, Diaper, Beer}	
<i>T</i> ₄	{Bread, Milk, Diaper, Beer}	
<i>T</i> ₅	{Diamond, Necklace}	
<i>T</i> ₆	{Diamond, Necklace}	

Minimum support threshold: 60%

 $Sup(\{Bread, Milk\}) = 4/6 = 66.6\%$

{Bread, Milk} is a frequent itemset

Domain Driven Actionable Knowledge Discovery

- The identified patterns are handed over to business people
- They cannot interpret the patterns for business use
 - There are many patterns/not informative
 - Not interested to business needs.
 - How to interpret the patterns to business actions

Insufficiency of Frequent Pattern Mining

- In Market Analysis
 - Business objective: Increase Revenue
 - May lose infrequent but valuable patterns
 - May present too many frequent but unprofitable

patterns

Cannot find patterns having high profits

A Motivation Example

TID	Transaction
T_1	{Bread(1), Milk(1)}
<i>T</i> ₂	{Bread(1), Milk(1)}
<i>T</i> ₃	{Bread(1), Milk(1), Diaper(3), Beer(6)}
<i>T</i> ₄	{Bread(1), Milk(1), Diaper(3), Beer(6)}
T_5	{Diamond(1), Necklace(1)}
T_6	{Diamond(1), Necklace(1)}

Item	Unit Profit
Bread	20
Milk	30
Diamond	1,000
Necklace	300
Diaper	300
Beer	70

{Diamond, Necklace}: \$2600

{Diaper, Beer}:\$2640

{Bread, Milk}: \$200

High Utility Sequential Pattern Mining

- Given a set of sequences: find all sequences whose utility is > a user-specified minimum threshold
 - Each item has quantity in a transaction
 - Each item has a value (e.g., price)

Items	Profit
Milk	\$3
Egg	\$2
Birthday Cake	\$20
Birthday Card	\$10
Bread	\$1

CID	TID	
C1	T1	{(Bread,2), (Milk,6)}
C1	T2	{(Birthday Card,2)}
C1	Т3	{ (Birthday Cake,2), (egg,3)}
C2	Т3	{(Bread,2), (Milk,4), (Yoghurt,3), (Tuna,5)}
C2	T4	{(egg,5), (Pizza,4), (Juice,2)}
C3	T5	{ (Bread,2),(Yoghurt,4), (Milk,3)}
C3	T6	{(Milk,1), (cheese,2)}

What is utility?

• Utility of item in a transaction = internal utility (quantity of items in the transaction) x external utility (profit of the item).

▶ U(Milk,T1) = 3 × 6 = 18

lt

Μ

E

B

B

В

- Utility of itemset in a sequence = sum of utilities of its items:
 - ▶ U({Bread, Milk}, C1)= 2 × 1 + 6 × 3 = 20
- Utility of sub-sequence in a sequence = sum of its itemsets' utilities
 - ▶ U(<{Milk}{egg}>,C1) = 3 × 6 + 3 × 2 = 24
 - If more than one occurrence, then maximum value among occurrences

		CID	TID	
ems	Profit	C1	T1	{(Bread,2), (Milk,6)}
ilk	\$3	C1	T2	{(Birthday Card,2)}
gg	\$2	C1	Т3	{ (Birthday Cake,2), (egg,3)}
irthday Cake	\$20	C2	Т3	{(Bread,2), (Milk,4), (Yoghurt,3), (Tuna,5)}
rthday Card	\$10	C2	T4	{(egg,5), (Pizza,4), (Juice,2)}
read	\$1	C3	T5	{ (Bread,2),(Yoghurt,4), (Milk,3)}
	T	C3	T 6	{(Milk,1), (cheese,2)}

Problem 1: Actionability

Problem 2: News cold-start

Visited articles

PENSYS: The Proposed Framework

FIRST STAGE: NEWS LEVEL

Stage 1: Utility-based Pattern Mining

Stage 1 Overview

Top-2 High Utility Patterns

Num.	Set of news	Time (mins)	Support	
	Vigil held for daughter of Conservative Party president	2537	107	
1.	MH17: Disaster ratchets up Russia-Ukraine tensions			
	Retiree, 60, wonders how long her money will last,		102	
2.	Which is better, a RRIF or an annuity You may be surprised	1473		

Top-2 Frequent Patterns

Num.	Set of news	Time (mins)	Support	
	Target faces calls to withdraw from Canada,		254	
1.	Mike Duffy facing 31 charges from Senate expenses scandal, RCMP says	144		
	Florida police say, La Prairie, Quebec mayor dies from wasp stings	105	286	
2.	Canadian professor was killed in targeted attack			

Recommendation Rules

Top 3 of our Utility-Based Association Rules, sorted by uconf, time spent in descending order	Time Spent (minute)
[Researchers find dozens of genetic links to schizophrenia] ==> [Anti-Semitic graffiti found in Thornhill, days after Islamic centre defaced] [Video: Fearless 93-year-old tackles CN Tower EdgeWalk] [Teen use of human growth hormone on the rise] [Canadian poised to become terror tourist given 10-year sentence] [Ontario Liberals waste no time playing hardball with opposition] [The Gaza war has done terrible things to Israeli society]	239.98
[Researchers find dozens of genetic links to schizophrenia] ==> [Anti-Semitic graffiti found in Thornhill, days after Islamic centre defaced] [Teen use of human growth hormone on the rise] [Canadian poised to become terror tourist given 10-year sentence] [Ontario Liberals waste no time playing hardball with opposition] [The Gaza war has done terrible things to Israeli society]	239.93
[Researchers find dozens of genetic links to schizophrenia] ==> [Anti-Semitic graffiti found in Thornhill, days after Islamic centre defaced] [Video: Fearless 93-year-old tackles CN Tower EdgeWalk] [Canadian poised to become terror tourist given 10-year sentence] [Ontario Liberals waste no time playing hardball with opposition] [The Gaza war has done terrible things to Israeli society]	239.8

Performance

- Only 116000 records
 - Over 4 GB memory usage in average
 - Around 45 mins run time

Big Data Framework

Results

m = Minutes, h = Hours							
Dataset	$\boldsymbol{\delta}\left(\% ight)$	BigHUSP	BigHUSP _{Basic}	BigHUSP _{SA}			
	0.09	1.6 m	3.6 m	0.99 h			
	0.08	2.3 m	4.4 m	1.4 <i>h</i>			
Globe	0.07	$m = Minutes, h = Hours$ (%) $BigHUSP$ $BigHUSP_{Basi}$ 0.09 $1.6 m$ $3.6 m$ 0.09 $1.6 m$ $3.6 m$ 0.08 $2.3 m$ $4.4 m$ 0.07 $3.1m$ $6.6 m$ 0.06 $5.0 m$ $11.0 m$ 0.05 $9.2 m$ $20.7 m$ 0.05 $3.0 m$ $10.0 m$ 0.04 $4.26 m$ $14.4 m$ 0.03 $6.23 m$ $17.9 m$ 0.04 $4.26 m$ $14.4 m$ 0.03 $6.23 m$ $17.9 m$ 0.04 $4.26 m$ $14.4 m$ 0.03 $6.23 m$ $17.9 m$ 0.04 $4.26 m$ $14.4 m$ 0.03 $6.23 m$ $17.9 m$ 0.04 $4.26 m$ $17.9 m$ 0.05 $37.6 m$ $76.5 m$ 0.09 $15.0 m$ $33.4 m$ 0.09 $15.0 m$ $33.4 m$ 0.06 $34.8 m$ $107.7 m$ 0.06 $34.8 m$ $107.7 m$ 0.07 $25.0 m$ $77.0 m$ 0.08 $16.3 m$ $34.5 m$ 0.09 $13.1 m$ $26.3 m$ 0.07 $20.6 m$ $47.2 m$ 0.06 $23.8 m$ $51.8 m$ 0.05 $32.2 m$ $85.3 m$	6.6 m	2.2 h			
	0.06	5.0 <i>m</i>	11.0 m	3.3 <i>h</i>			
	0.05	9.2 m	20.7 m	4.5 <i>h</i>			
	0.05	3.0 m	10.0 m	1.1 h			
	0.04	4.26 m	14.4 m	1.2 <i>h</i>			
	0.03	6.23 m	17.9 m	1.6 h			
synthDS1	0.02	9.9 m	27.2 m	1.9 h			
	0.01	14.3 m	29.4 m	3.2 <i>h</i>			
	0.009	9%BigHUSPBigH091.6 m3082.3 m4073.1m6065.0 m1059.2 m20053.0 m1044.26 m1036.23 m1029.9 m20114.3 m290937.6 m70915.0 m30819.9 m50725.0 m70634.8 m100538.7 m150913.1 m240816.3 m30720.6 m40623.8 m50532.2 m8	76.5 m	7.8 h			
	0.09	15.0 m	33.4 m	6.4 <i>h</i>			
	0.08	19.9 m	56.2 m	12.0 h			
ChainStore	0.07	25.0 m	77.0 m	13.4 h			
	0.06	34.8 m	107.7 m	14.6 h			
	0.05	38.7 m	159.8 m	17.4 h			
	0.09	13.1 m	26.3 m	7.7 h			
	0.08	16.3 m	34.5 m	9.3 h			
synthDS2	0.07	20.6 m	47.2 m	15.7 h			
	0.06	23.8 m	51.8 m	17.8 h			
	0.05	32.2 m	85.3 m	21.4 h			

SECOND STAGE: TOPIC LEVEL

PENSYS: The Proposed Framework

Stage 2: A Semantic Relational Topic Model

- News cold start problem
 - Content based recommendation systems
 - Similar topics
- User behavior?
 - Hybrid approach

		-							
	Topic 1: Health		Topic 2: Debt		Topic 3: Travel		Topic 4: Sport		Topic 5: Politics
	w, p(w Topic1)		w, p(w Topic2)	w,p(w Topic3)		w, p(w Topic4)		w, p(w Topic5)	
	Drug, 0.5		Debt, 0.5		Hotel, 0.5		Soccer, 0.5		Obama, 0.5
(a)	Health, 0.4		Bond, 0.4		Travel, 0.4		Sport, 0.4		Politics, 0.4
	People, 0.25				Credit, 0.25 Park, 0.25		NBA, 0.25		Election, 0.25
	Disease, 0.15		Investors, 0.15		Mountain, 0.15		Ronaldo, 0.15		War, 0.15

	nw ₁	nw ₂	nw ₃	nw ₄	nw ₅
	$t, p(t nw_1)$	$t, p(t nw_2)$	$t, p(t nw_3)$	$t, p(t nw_4)$	$t, p(t nw_5)$
(b)	Topic 1, 0.6	Topic 2, 0.7	Topic 3, 0.6	Topic 4 0.8	Topic 5, 0.6
	Topic 3, 0.2	Topic 3, 0.4	Topic 1, 0.4	Topic 5, 0.4	Topic 3, 0.4

Stage 2: A Semantic Relational Topic Model

Topic-based Rules Example

Outline

- Introduction to Big Data
- User Modeling in Digital Media
- Depression Acuity Detection
- Cogniciti: An Online Brain Health Assessment
- Conclusion

Depression

Screening questionnaire

Recalling events

Problems:

- Affected by current mental state
- Low quality of data

Depression Acuity Detection

Proposed Framework

Results

- 1. Depression terms
 - ▶ 65% higher
- 2. Mood classification
 - 69% accuracy
- 3. Physical wellness indicators
 - Time
 - Duration
 - Sequential order of events matters

Outline

- Introduction to Big Data
- User Modeling in Digital Media
- Depression Acuity Detection
- Cogniciti: An Online Brain Health Assessment
- Conclusion

Brain Health

Motivation

▶ 47 million people suffer from dementia (Alzheimer's Society of Canada)

Early detection of dementia: \$219 billion saving

Solution

An early warning test for brain health

Assessments

Strong consumer response from one Canadian media release

Test re-test reliability

Site Visits

Completed Assessments

Conclusions

- User behavior analysis in big data is an important area of research
- We have done some (hopefully) interesting work in this area
 - Utility-based pattern discovery in big data streams
 - Depression acuity detection
 - Online Brain Health Assessment
- A lot more research needs to be done!

User Behavior Analysis in Big Data

mori.zihayatkermani@utoronto.ca