

Effective and Complete Discovery of Order Dependencies via Set-based Axioms

Jarek Szlichta, Parke Godfrey, Lukasz Golab, Mehdi Kargar, Divesh Srivastava

University of Ontario Institute of Technology, Canada; York University, Canada University of Waterloo, Canada; University of Windsor, Canada AT&T Labs-Research, US

Introduction

- Integrity constraints are commonly used to characterize data quality and optimize business queries
- Unlike functional dependencies (FDs), order dependencies (ODs) capture relationships among attributes with naturally ordered domains such as timestamps, numbers and strings
 - E.g., An employee that pays higher taxes has a higher salary than another employee (salary orders tax)

Background: Order Dependencies

- The order dependency (OD) X → Y means that Y's list attribute values are monotonically non-decreasing wrt X's list attribute values (if the dataset is sorted by X, it is also sorted by Y)
 - E.g., sal → tax and sal → grp, subg hold in employee salary table
 - Order Compatible $X \sim Y$ if $XY \leftrightarrow YX$

#	ID	yr	posit	bin	sa	perc	tax	grp	subg
t1	10	16	secr	1	$5\mathrm{K}$	20%	1K	А	III
t2	11	16	mngr	2	8K	25%	2K	С	II
<u>t</u> 3	12	16	direct	3	10K	30%	3K	D	Ι
t4	10	15	secr	1	$4.5\mathrm{K}$	20%	$0.9 \mathrm{K}$	А	III
t5	11	15	mngr	2	6K	25%	$1.5\mathrm{K}$	С	Ι
t6	12	15	direct	3	8K	25%	2K	С	II

OD Violations

- However, the OD sal → subg, grp does NOT hold in the following employee salary table
 - illustrating that the order of attributes in ODs matters!

#	ID	yr	posit	bin	sal	perc	tax	grp	subg
t1	10	16	secr	1	5K	20%	1K	Α	III
t2	11	16	mngr	2	8K	25%	2K	С	II
t3	12	16	direct	3	10K	30%	3K	D	Ι
t4	10	15	secr	1	$4.5\mathrm{K}$	20%	0.9K	Α	III
t5	11	15	mngr	2	6K	25%	$1.5\mathrm{K}$	C	II
t6	12	15	direct	3	8K	25%	2K	C	I

Contributions

- Our aim is to provide a deep understanding of OD discovery from real-datasets
 - We address the limitations of prior work, which has factorial complexity in the number of attributes
 - An insight we present is that list-based ODs can be expressed using sets of attributes via a polynomial mapping to set-based canonical-form
 - The mapping allows us to design an efficient OD discovery algorithm that has exponential worst-case complexity in the number of attributes
 - This complexity is similar to previous FD discovery algorithms such as TANE

Framework Overview

Canonical Form: Constant

- Attribute A is a constant within each equivalence class wrt set of attributes X called context if there is no splits, where values of A are not equal, denoted as X: [] → A
 - E.g, bin is a constant in the context of posit, i.e., {posit}:
 [] → bin
 - But salary is NOT a constant in the context of posit, i.e.,
 {posit}: [] → sal does not hold

#	ID	yr	posit	bin	sal	perc	tax	grp	subg
t1	10	16	secr	1	5K	20%	1K	Α	III
t2	11	16	mngr	2	$8\mathrm{K}$	25%	2K	С	II
t3	12	16	direct	3	10K	30%	3K	D	Ι
t4	10	15	secr	1	4.5K	20%	0.9K	Α	III
t5	11	15	mngr	2	6K	25%	$1.5\mathrm{K}$	С	Ι
t6	12	15	direct	3	8K	25%	2K	С	II

Canonical Form: Order-Compatibility

- Two marked attributes A and B are order-compatible if there are no swaps where A grows and B goes down within each equivalence class X, denoted as X: A ~ B
 - E.g., there is no swap between bin and sal in the context of year, i.e., {year}: bin ~ sal
 - But there is a swap between bin and subg in the context of year, i.e., {year}: bin ~ subg does not hold

#	ID	yr	posit	bin	sal	perc	tax	grp	subg
t1	10	16	secr	1	$5\mathrm{K}$	20%	1K	Α	
t2	11	16	mngr	2	8K	25%	2K	С	Π
t3	12	16	direct	3	10K	30%	3K	D	Ι
t4	10	15	secr	1	4.5K	20%	0.9K	Α	III
t5	11	15	mngr	2	6K	25%	$1.5\mathrm{K}$	С	Ι
t6	12	15	direct	3	8K	25%	2K	С	II

Canonical Form: Mapping

- Polynomial Mapping of list-based ODs to equivalent set-based ODs, given X → Y
 - In the context of *X* all attributes in *Y* are constants
 - In the context of all prefixes over XY the following attributes are order compatible
- E.g., an OD [AB] → [CD] can be mapped into:
 - {A,B}: [] → C, {A,B}: [] → D
 - {}: A ~ C, {A}: B ~ C, {C}: A ~ D, {A, C}: B ~ D

Set-based Axiomatization for Canonical ODs

8.

1. Reflexivity \mathcal{X} : [] \mapsto A, \forall A $\in \mathcal{X}$ 2. Identity \mathcal{X} : A ~ A 3. Commutativity \mathcal{X} : A ~ B \mathcal{X} : B ~ A 4. Strengthen $\mathcal{X}: [] \mapsto \mathsf{A}$ $\mathcal{X}A: [] \mapsto B$ $\mathcal{X}: [] \mapsto \mathsf{B}$ 5. Propagate $\frac{\mathcal{X}: [] \mapsto \mathsf{A}}{\mathcal{X}: \mathsf{A} \sim \mathsf{B}}$

6. Augmentation-I $\frac{\mathcal{X}: [] \mapsto \mathsf{A}}{\mathcal{Z}\mathcal{X}: [] \mapsto \mathsf{A}}$ 7. Augmentation-II $\frac{\mathcal{X}: \mathsf{A} \sim \mathsf{B}}{\mathcal{Z}\mathcal{X}: \mathsf{A} \sim \mathsf{B}}$

Chain

$$\mathcal{X}: A \sim B_1$$

 $\forall_{i \in [1, n-1]}, \mathcal{X}: B_i \sim B_{i+1}$
 $\mathcal{X}: B_n \sim C$
 $\forall_{i \in [1, n]}, \mathcal{X}B_i : A \sim C$
 $\mathcal{X}: A \sim C$

 We show the axiomatization is sound and complete for set-based ODs

Lattice

- FASTOD traverses the lattice until all complete and minimal ODs are found
- We use the axioms to prune the search space

Experiments

- We compare our FASTOD algorithm with TANE for the discovery of FDs
- We also compare with ORDER, the only prior OD discovery algorithm
 - ORDER has a factorial worst-case time complexity in the # of attributes, and linear in the # of tuples
 - Our algorithm has an exponential worst-base time complexity in the # of attributes, and linear in the # of tuples

Scalability in # of Tuples

VLDB'17

Scalability in # of Attributes

VLDB'17

Effect of Pruning

VLDB'17

Conclusions and Future Work

- We presented an efficient algorithm for discovering ODs
 - which we showed to be substantially faster than the prior-state-of-the-art
- The technical innovation that made our algorithm possible is:
 - a novel mapping into a set-based canonical form and
 - an axiomatization for set-based ODs
- Future work:
 - Bidirectional ODs (ascending and descending)
 - Conditional ODs that hold over portions of a relation

