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10 nearest neighbors from a collection of 20,000 images
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10 nearest neighbors from a collection of 2 million images
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¡ Many problems can be expressed as 
finding “similar” sets:
§ Find near-neighbors in high-dimensional space

¡ Examples:
§ Pages with similar words

§ For duplicate detection (Mirror Pages, Plagiarism)
§ Customers who purchased similar products

§ Online Purchases (Amazon)
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¡ Given: High dimensional data points 𝒙𝟏, 𝒙𝟐, …
§ For example: Image is a long vector of pixel colors

1 2 1
0 2 1
0 1 0

→ [1 2 1 0 2 1 0 1 0]

¡ And some distance function 𝒅(𝒙𝟏, 𝒙𝟐)
§ Which quantifies the “distance” between 𝒙𝟏 and 𝒙𝟐

¡ Goal: Find all pairs of data points (𝒙𝒊, 𝒙𝒋) that are 
within some distance threshold 𝒅 𝒙𝒊, 𝒙𝒋 ≤ 𝒔

¡ Note: Naïve solution would take 𝑶 𝑵𝟐 L
where 𝑵 is the number of data points

¡ MAGIC: This can be done in 𝑶 𝑵 !! How?
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Today’s lecture: Find pairs of similar docs
Main idea: Candidates
-- Pass 1: Take documents and hash them to buckets such that 
documents that are similar hash to the same bucket
-- Pass 2: Only compare documents that are candidates 
(i.e., they hashed to a same bucket)
Benefits: Instead of O(N2) comparisons, we need O(N) 
comparisons to find similar documents





¡ Goal: Find near-neighbors in high-dim. space
§ We formally define “near neighbors” as 

points that are a “small distance” apart
¡ For each application, we first need to define 

what “distance” means
¡ Today: Jaccard distance/similarity

§ The Jaccard similarity of two sets is the size of their 
intersection divided by the size of their union:
sim(C1, C2) = |C1ÇC2|/|C1ÈC2|

§ Jaccard distance: d(C1, C2) = 1 - |C1ÇC2|/|C1ÈC2|
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3 in intersection
8 in union
Jaccard similarity= 3/8
Jaccard distance = 5/8



¡ Goal: Given a large number (𝑵 in the millions or 
billions) of documents, find “near duplicate” pairs

¡ Applications:
§ Similar news articles at many news sites

§ Cluster articles by “same story”
§ Mirror websites, or approximate mirrors

§ Don’t want to show both in search results
¡ Problems:

§ Too many documents to compare all pairs
§ Documents are so large or so many that they cannot 

fit in main memory
§ Many small pieces of one document can appear 

out of order in another
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1. Shingling: Convert documents to sets

2. Min-Hashing: Convert large sets to short 
signatures, while preserving similarity

3. Locality-Sensitive Hashing: Focus on 
pairs of signatures likely to be from 
similar documents

§ Candidate pairs!
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Step 1: Shingling: Convert documents to sets

ShinglingDocu-
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¡ Step 1: Convert documents to sets

¡ Simple approaches:
§ Document = set of words appearing in document
§ Document = set of “important” words (eliminate 

stop words: “and”, “a”, “the”, “to”, “you” and so 
on)

§ Don’t work well for this application. Why?
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¡ Step 1: Convert documents to sets

¡ Simple approaches:
§ Document = set of words appearing in document
§ Document = set of “important” words (eliminate 

stop words: “and”, “a”, “the”, “to”, “you” and so 
on)

§ Don’t work well for this application. Why?

¡ Additiotinally need to account for ordering 
of words!
§ Solution: Shingles!
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¡ A k-shingle (or k-gram) for a document is a 
sequence of k tokens that appears in the doc
§ Tokens can be characters, words or something 

else, depending on the application
§ Assume tokens = characters for examples

¡ Example: k=2; document D1 = abcab
Set of 2-shingles: S(D1) = {ab, bc, ca}
§ Option: Shingles as a bag (multiset), count ab

twice: S’(D1) = {ab, bc, ca, ab}
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¡ To compress long shingles, we can hash (or 
simply map) them to (say) 4 bytes

¡ Represent a document by the set of hash 
values of its k-shingles
§ Idea: Rare (or none) collisions of shingles

¡ Example: k=2; document D1= abcab
Set of 2-shingles: S(D1) = {ab, bc, ca}
Hash the singles: h(D1) = {1, 5, 7}
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¡ Document D1 is a set of its k-shingles C1=S(D1)
¡ Equivalently, each document is a 

0/1 vector in the space of k-shingles
§ Each unique shingle is a dimension
§ Vectors are very sparse

¡ A natural similarity measure is the 
Jaccard similarity:

sim(D1, D2) = |C1ÇC2|/|C1ÈC2|
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¡ Documents that have lots of shingles in 
common have similar text, even if the text 
appears in different order

¡ Caveat: You must pick k large enough, or most 
documents will have most shingles
§ k = 5 is OK for short documents
§ k = 10 is better for long documents

Big Data Analytics CSCI 4030
21



¡ Suppose we need to find near-duplicate 
documents among 𝑵 = 𝟏 million documents

¡ Naïvely, we would have to compute pairwise 
Jaccard similarities for every pair of docs
§ 𝑵(𝑵 − 𝟏)/𝟐 ≈ 5*1011 comparisons
§ At 105 secs/day and 106 comparisons/sec, 

it would take 5 days

¡ For 𝑵 = 𝟏𝟎 million, it takes more than a year…
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Step 2: Minhashing: Convert large sets to 
short signatures, while preserving similarity
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¡ Many similarity problems can be 
formalized as finding subsets that 
have significant intersection

¡ Encode sets using 0/1 (bit, boolean) vectors 
§ One dimension per element in the universal set

¡ Interpret set intersection as bitwise AND, and 
set union as bitwise OR

¡ Example: C1 = 10111; C2 = 10011
§ Size of intersection = 3; size of union = 4, 
§ Jaccard similarity (not distance) = 3/4
§ Distance: d(C1,C2) = 1 – (Jaccard similarity) = 1/4
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¡ Rows = elements (shingles)
¡ Columns = sets (documents)
§ 1 in row e and column s if and only 

if e is a member of s
§ Column similarity is the Jaccard 

similarity of the corresponding 
sets (rows with value 1)

§ Typical matrix is sparse!
¡ Each document is a column:

§ Example: sim(C1 ,C2) = ?
§ Size of intersection = 3; size of union = 6, 

Jaccard similarity (not distance) = 3/6
§ d(C1,C2) = 1 – (Jaccard similarity) = 3/6

25
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¡ So far:
§ Documents ® Sets of shingles
§ Represent sets as boolean vectors in a matrix

¡ Next goal: Find similar columns while 
computing small signatures
§ Similarity of columns == similarity of signatures
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¡ Next Goal: Find similar columns, Small signatures
¡ Approach:

§ 1) Signatures of columns: small summaries of columns
§ 2) Examine pairs of signatures to find similar columns

§ Essential: Similarities of signatures and columns are related

§ 3) Optional: Check that columns with similar signatures 
are really similar

¡ Warnings:
§ Comparing all pairs may take too much time: Job for LSH

§ These methods can produce false negatives, and even false 
positives (if the optional check is not made)
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¡ Key idea: “hash” each column C to a small 
signature h(C), such that:
§ (1) h(C) is small enough that the signature fits in RAM
§ (2) sim(C1, C2) is the same as the “similarity” of 

signatures h(C1) and h(C2)

¡ Goal: Find a hash function h(·) such that:
§ If sim(C1,C2) is high, then with high prob. h(C1) = h(C2)
§ If sim(C1,C2) is low, then with high prob. h(C1) ≠ h(C2)

¡ Hash docs into buckets. Expect that “most” pairs 
of near duplicate docs hash into the same bucket!
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¡ Goal: Find a hash function h(·) such that:
§ if sim(C1,C2) is high, then with high prob. h(C1) = h(C2)
§ if sim(C1,C2) is low, then with high prob. h(C1) ≠ h(C2)

¡ Clearly, the hash function depends on 
the similarity metric:
§ Not all similarity metrics have a suitable 

hash function
¡ There is a suitable hash function for 

the Jaccard similarity: It is called Min-Hashing
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¡ Imagine the rows of the boolean matrix 
permuted under random permutation p

¡ Define a “hash” function hp(C) = the index of 
the first (in the permuted order p) row in 
which column C has value 1:

¡ Use several (e.g., 100) independent hash 
functions (that is, permutations) to create a 
signature of a column
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¡ Choose a random permutation p
¡ Claim: Pr[hp(C1) = hp(C2)] = sim(C1, C2) 

= |C1ÇC2|/|C1ÈC2|
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¡ We know: Pr[hp(C1) = hp(C2)] = sim(C1, C2)

¡ The similarity of two signatures is the 
fraction of the hash functions in which they 
agree

¡ Note: Because of the Min-Hash property, the 
similarity of columns is “almost the same” as 
the expected similarity of their signatures
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Similarities:
1-3      2-4    1-2   3-4

Col/Col 0.75    0.75    0       0
Sig/Sig 0.67    1.00    0       0
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¡ Pick K=100 random permutations of the rows
¡ Think of sig(C) as a column vector
¡ sig(C)[i] = according to the i-th permutation, the 

index of the first row that has a 1 in column C
Note: The sketch (signature) of document C is small  
~𝟏𝟎𝟎 bytes!

¡ We achieved our goal! We “compressed” 
long bit vectors into short signatures
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Step 3: Locality-Sensitive Hashing:
Focus on pairs of signatures likely to be from 
similar documents
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¡ Goal: Find documents with Jaccard similarity at 
least s (for some similarity threshold, e.g., s=0.8)

¡ LSH – General idea: Use a function f(x,y) that 
tells whether x and y is a candidate pair: a pair 
of elements whose similarity must be evaluated

¡ For Min-Hash matrices: 
§ Hash columns of signature matrix M to many buckets
§ Each pair of documents that hashes into the 

same bucket is a candidate pair
37
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¡ Pick a similarity threshold s (0 < s < 1)

¡ Columns x and y of M are a candidate pair if 
their signatures agree on at least fraction s of 
their rows: 
M (i, x) = M (i, y) for at least frac. s values of i
§ We expect documents x and y to have the same 

(Jaccard) similarity as their signatures

Big Data Analytics CSCI 4030
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¡ Big idea: Hash columns of 
signature matrix M several times

¡ Arrange that (only) similar columns are 
likely to hash to the same bucket, with 
high probability

¡ Candidate pairs are those that hash to 
the same bucket

Big Data Analytics CSCI 4030
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¡ Divide matrix M into b bands of r rows

¡ For each band, hash its portion of each 
column to a hash table with k buckets
§ Make k as large as possible

¡ Candidate column pairs are those that hash 
to the same bucket for ≥ 1 band

¡ Tune b and r to catch most similar pairs, 
but few non-similar pairs

41
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Matrix M

r rows b bands

Buckets
Columns 2 and 6
are probably identical 
(candidate pair)

Columns 6 and 7 are
probably different.
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¡ There are enough buckets that columns are 
unlikely to hash to the same bucket unless 
they are identical in a particular band

¡ Hereafter, we assume that “same bucket” 
means “identical in that band”

¡ Assumption needed only to simplify analysis, 
not for correctness of algorithm
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Assume the following case:
¡ Suppose 100,000 columns of M (100k docs)
¡ Signatures of 100 integers (rows)
¡ Therefore, signatures take 40Mb
¡ Choose b = 20 bands of r = 5 integers/band

¡ Goal: Find pairs of documents that 
are at least s = 0.8 similar

Big Data Analytics CSCI 4030
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¡ Find pairs of ³ s=0.8 similarity, set b=20, r=5
¡ Assume: sim(C1, C2) = 0.8

§ Since sim(C1, C2) ³ s, we want C1, C2 to be a candidate 
pair: We want them to hash to at least 1 common bucket
(at least one band is identical)

¡ Probability C1, C2 identical in one particular 
band: (0.8)5 = 0.328

¡ Probability C1, C2 are not similar in all of the 20 
bands: (1-0.328)20 = 0.00035 
§ i.e., about 1/3000th of the 80%-similar column pairs 

are false negatives (we miss them)
§ We would find 99.965% pairs of truly similar documents

45
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¡ Find pairs of ³ s=0.8 similarity, set b=20, r=5
¡ Assume: sim(C1, C2) = 0.3

§ Since sim(C1, C2) < s we want C1, C2 to hash to NO 
common buckets (all bands should be different)

¡ Probability C1, C2 identical in one particular 
band: (0.3)5 = 0.00243

¡ Probability C1, C2 identical in at least 1 of 20 
bands: 1 - (1 - 0.00243)20 = 0.0474
§ In other words, approximately 4.74% pairs of docs 

with similarity 0.3% end up becoming candidate pairs
§ They are false positives since we will have to examine them 

(they are candidate pairs) but then it will turn out their 
similarity is below threshold s

Big Data Analytics CSCI 4030
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¡ Pick:
§ The number of Min-Hashes (rows of M) 
§ The number of bands b, and 
§ The number of rows r per band
to balance false positives/negatives

¡ Example: If we had only 15 bands of 5 
rows, the number of false positives would 
go down, but the number of false negatives 
would go up
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¡ Columns C1 and C2 have similarity t
¡ Pick any band (r rows)
§ Prob. that all rows in band equal = tr

§ Prob. that some row in band unequal = 1 - tr

¡ Prob. that no band identical  = (1 - tr)b

¡ Prob. that at least 1 band identical =                  
1 - (1 - tr)b

48
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¡ Similarity threshold s
¡ Prob. that at least 1 band is identical:
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s 1-(1-sr)b

.2 .006

.3 .047

.4 .186

.5 .470

.6 .802

.7 .975

.8 .9996



¡ Picking r and b to get the best S-curve
§ 50 hash-functions (r=5, b=10)
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¡ Tune M, b, r to get almost all pairs with 
similar signatures, but eliminate most pairs 
that do not have similar signatures

¡ Check in main memory that candidate pairs
really do have similar signatures

¡ Optional: In another pass through data, 
check that the remaining candidate pairs 
really represent similar documents

51
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¡ Shingling: Convert documents to sets
§ We used hashing to assign each shingle an ID

¡ Min-Hashing: Convert large sets to short 
signatures, while preserving similarity
§ We used similarity preserving hashing to generate 

signatures with property Pr[hp(C1) = hp(C2)] = sim(C1, C2)
§ We used hashing to get around generating random 

permutations
¡ Locality-Sensitive Hashing: Focus on pairs of 

signatures likely to be from similar documents
§ We used hashing to find candidate pairs of similarity ³ s
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§ There are two sets S and T in the figure below. What 
is their Jaccard similarity? 
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§ Assume we use k = 9 shingles. Is there some 
lexicographical similarity in the sentences:
§ “The plane was ready for touch down”
§ “The quarterback scored a touchdown” 

§ How about if we eliminate white spaces?
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§ Our corpus of documents is emails. Assume we 
choose k = 2 shingles. How is it going to affect emails 
similarity?

§ What would be your recommendation for k if corpus 
of documents is emails?
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§ The matrix representing four sets 𝑆;, … , 𝑆< is 
presented below. Suppose we pick the permutation 
of rows beadc. What is the value of minhash 
function h(𝑆=)?
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§ The matrix representing four sets 𝑆;, … , 𝑆< is 
presented below. Suppose we pick the permutation 
of rows beadc. What is the value of minhash 
function h(𝑆=)?
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§ The matrix representing four sets 𝑆;, … , 𝑆< is 
presented below. Suppose, we pick the permutation 
ℎ; = x + 1 mod 5 and 3x + 1 mod 5. 
§ Compute permutation hash functions for the matrix based 

on the row.
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§ Compute the signature matrix with single pass over 
two permutations established by the hash functions 
in the previous task. 
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§ Estimate the Jaccard similarities of the underlying 
sets 𝑆; and 𝑆< from the signature matrix.

§ What is the actual Jaccard similarity between 𝑆; and 
𝑆<?

Big Data Analytics CSCI 4030
60



¡ Evaluate the S-curve 1−(1−𝑠@)A for s = 0.5 and  
0.8, for the following values of r and b:

§ r = 3 and b = 10. 

Big Data Analytics CSCI 4030
61



§ The Jaccard similarity of sets is the ratio of the size of 
the intersection of the sets to the size of the union. 

§ This measure of similarity is suitable for many 
applications, including textual similarity of 
documents and similarity of buying habits of 
customers.
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§ A k-shingle is any k characters that appear 
consecutively in a document. 

§ If we represent a document by its set of k-shingles, 
then the Jaccard similarity of the shingle sets 
measures the textual similarity of documents. 

§ Sometimes, it is useful to hash shingles to bit strings 
of shorter length, and use sets of hash values to 
represent documents.
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§ A minhash function on sets is based on a 
permutation of the universal set. 

§ Given any such permutation, the minhash value for a 
set is that element of the set that appears first in the 
permuted order.
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It is normal to simulate a permutation by 
§ picking a random hash function and 
§ taking the minhash value for a set to be the least hash 

value of any of the set’s members..
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§ Locality sensitive hashing technique allows us to 
avoid computing the similarity of every pair of sets 
or their minhash signatures. 

§ If we are given signatures for the sets, we may divide 
them into bands, and only measure the similarity of 
a pair of sets if they are identical in at least one 
band. 

§ By choosing the size of bands appropriately, we can 
eliminate from consideration most of the pairs that 
do not meet our threshold of similarity.
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§ Finish Quiz unless you did over the lecture.
§ Review slides!
§ Read Chapter 3 from course book. 

§ You can find electronic version of the book on Blackboard. 
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