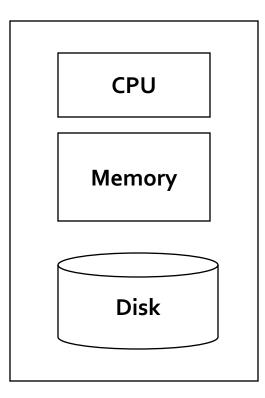
Map-Reduce and the New Software Stack

CSCI 4030 Big Data Analytics Based on Mining Massive Datasets Book: <u>http://www.mmds.org</u>

- Much of the course will be devoted to large scale computing for data mining
 Challenges:
 - How to distribute computation?
 - Distributed/parallel programming is hard
- Map-reduce addresses all of the above
 - Google's computational/data manipulation model
 - Elegant way to work with big data

Single Node Architecture



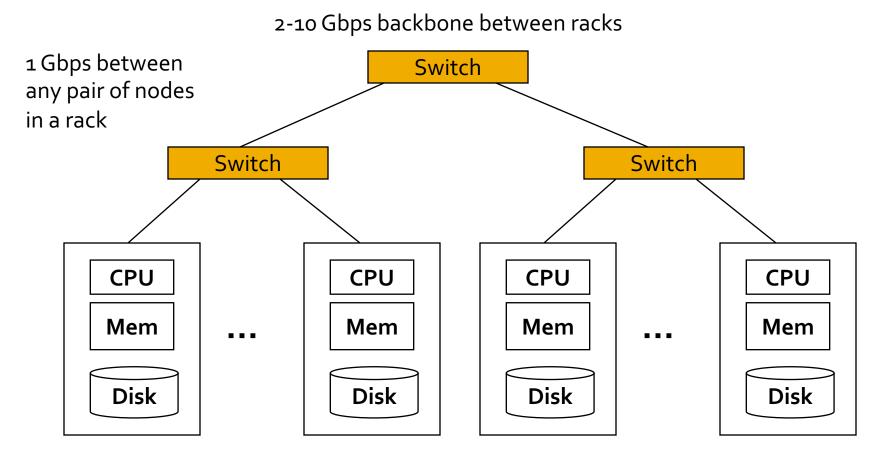
Machine Learning, Statistics

"Classical" Data Mining

Motivation: Google Example

- 20+ billion web pages x 20KB = 400+ TB
- 1 computer reads 30-35 MB/sec from disk
 - ~4 months to read the web
- ~1,000 hard drives to store the web
- Takes even more to **do** something useful with the data!
- Today, a standard architecture for such problems is emerging:
 - Cluster of commodity Linux nodes
 - Commodity network (ethernet) to connect them

Cluster Architecture



Each rack contains 16-64 nodes

In 2011 it was guestimated that Google had 1M machines, http://bit.ly/Shh0RO

Large-scale Computing

- Large-scale computing for data mining problems on commodity hardware
- Challenges:
 - How do you distribute computation?
 - How can we make it easy to write distributed programs?
 - Machines fail:
 - One server may stay up 3 years (1,000 days)
 - If you have 1,000 servers, expect to loose 1/day
 - People estimated Google had ~1M machines in 2011
 - 1,000 machines fail every day!

Idea and Solution

- Issue: Copying data over a network takes time
 Idea:
 - Bring computation close to the data
 - Store files multiple times for reliability
- Map-reduce addresses these problems
 - Google's computational/data manipulation model
 - Elegant way to work with big data
 - Storage Infrastructure File system
 - Google: GFS. Hadoop: HDFS
 - Programming model
 - Map-Reduce CSCI 4030

Storage Infrastructure

Problem:

If nodes fail, how to store data persistently?

Answer:

- Distributed File System:
 - Provides global file namespace
 - Google GFS; Hadoop HDFS;

Typical usage pattern

- Huge files (100s of GB to TB)
- Data is rarely updated in place
- Reads and appends are common

Distributed File System

Chunk servers

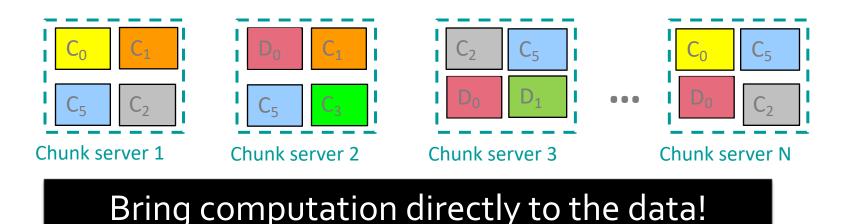
- File is split into contiguous chunks
- Typically each chunk is 16-64MB
- Each chunk replicated (usually 2x or 3x)
- Try to keep replicas in different racks

Master node

- a.k.a. Name Node in Hadoop's HDFS
- Stores metadata about where files are stored
- Might be replicated
- Client library for file access
 - Talks to master to find chunk servers
 - Connects directly to chunk servers to access data

Distributed File System

- Reliable distributed file system
- Data kept in "chunks" spread across machines
- Each chunk replicated on different machines
 - Seamless recovery from disk or machine failure



Chunk servers also serve as compute servers

Programming Model: MapReduce

Warm-up task:

- We have a huge text document
- Count the number of times each distinct word appears in the file
- Sample application:
 - Analyze web server logs to find popular URLs

Task: Word Count

Case 1:

 File too large for memory, but all <word, count> pairs fit in memory

Case 2:

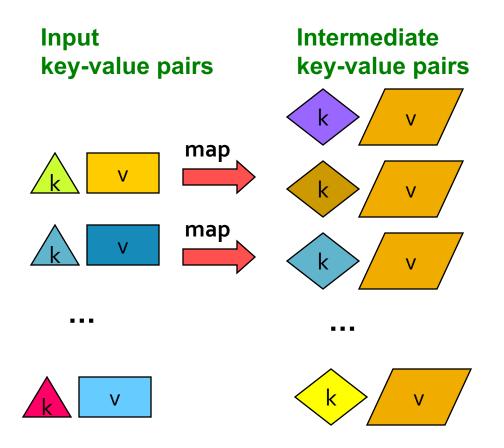
- Count occurrences of words:
 - words(doc.txt) | sort | uniq -c
 - where words takes a file and outputs the words in it, one per a line
- Case 2 captures the essence of MapReduce
 - Great thing is that it is naturally parallelizable

MapReduce: Overview

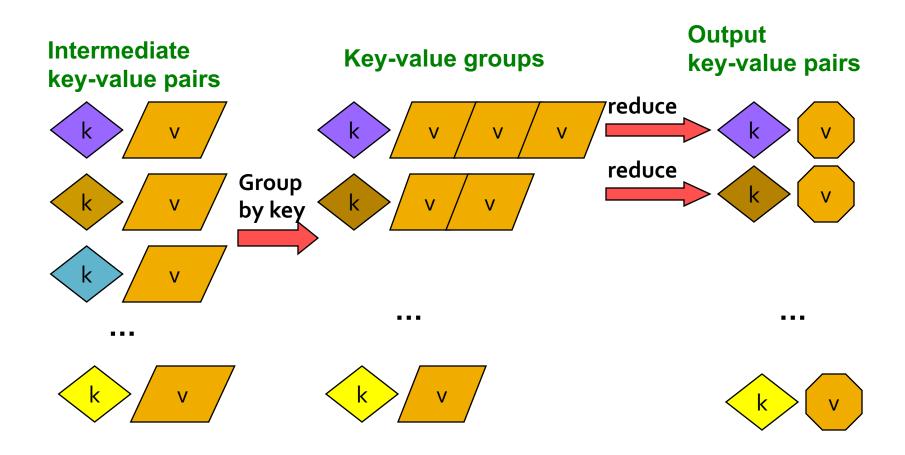
- Sequentially read a lot of data
- Map:
 - Extract something you care about
- Group by key: Sort and Shuffle
- Reduce:
 - Aggregate, summarize, filter or transform
- Write the result

Outline stays the same, **Map** and **Reduce** change to fit the problem

MapReduce: The <u>Map</u> Step



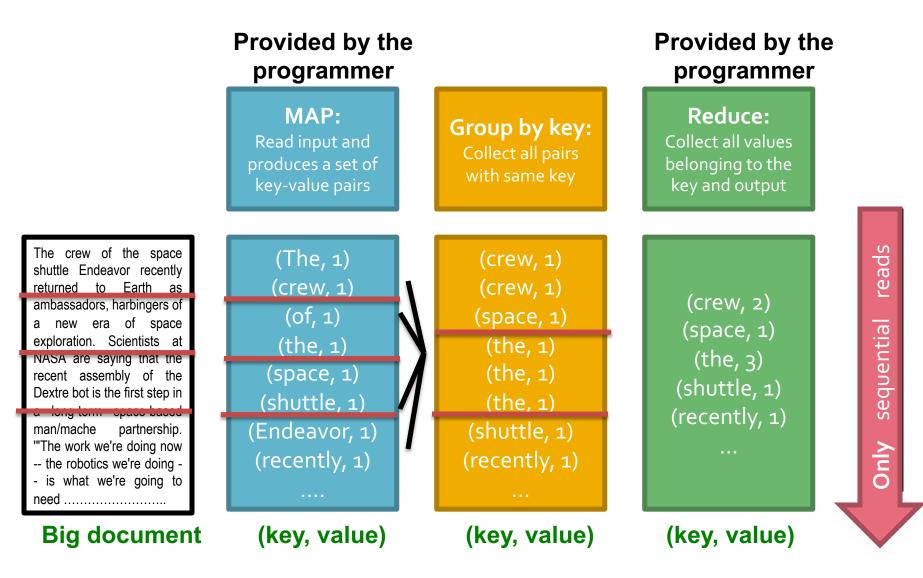
MapReduce: The <u>Reduce</u> Step



More Specifically

- Input: a set of key-value pairs
- Programmer specifies two methods:
 - Map(k, v) $\rightarrow \langle k', v' \rangle^*$
 - Takes a key-value pair and outputs a set of key-value pairs
 - E.g., key is the filename, value is a single line in the file
 - There is one Map call for every (k,v) pair
 - Reduce(k', <v'>*) → <k', v''>*
 - All values v' with same key k' are reduced together and processed in v' order
 - There is one Reduce function call per unique key k'

MapReduce: Word Counting



Word Count Using MapReduce

map(key, value): // key: document name; value: text of the document for each word w in value: emit(w, 1)

reduce(key, values):

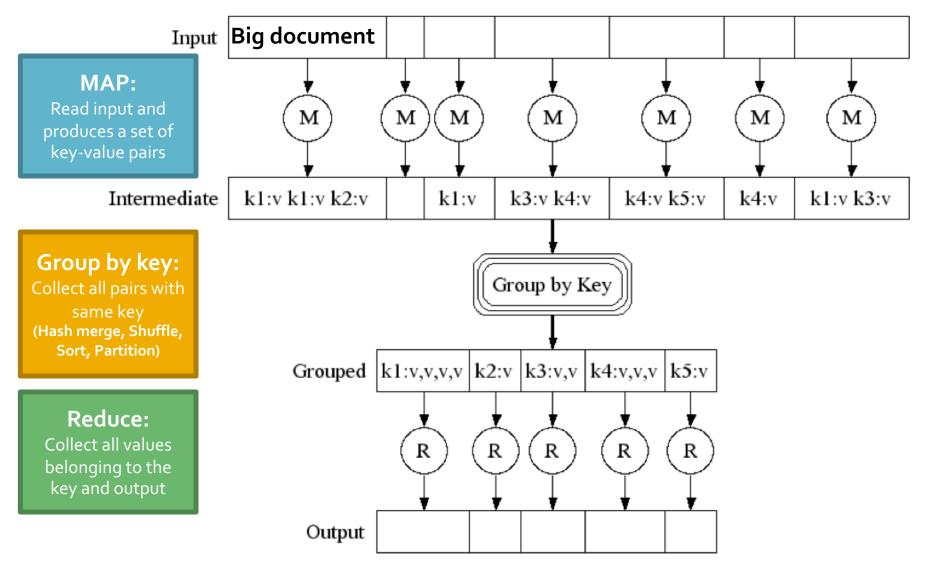
```
// key: a word; value: an iterator over counts
    result = 0
    for each count v in values:
        result += v
    emit(key, result)
```

Map-Reduce: Environment

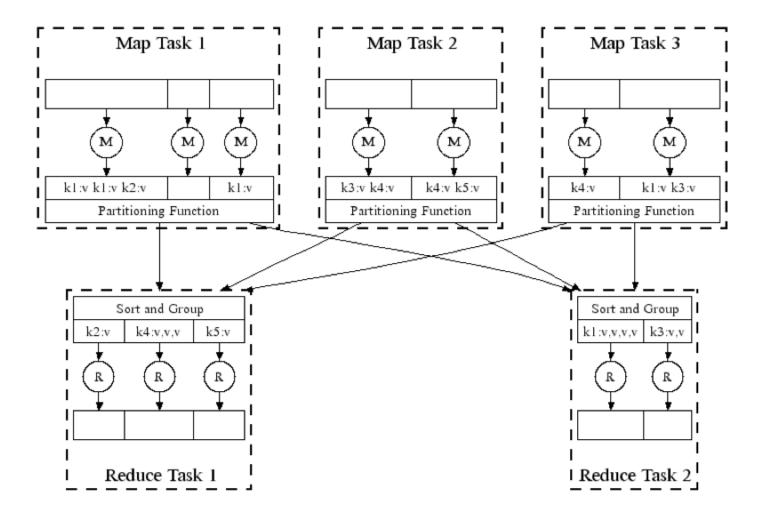
Map-Reduce environment takes care of:

- Partitioning the input data
- Scheduling the program's execution across a set of machines
- Performing the group by key step
- Handling machine failures
- Managing required inter-machine communication

Map-Reduce: A diagram



Map-Reduce: In Parallel



All phases are distributed with many tasks doing the work

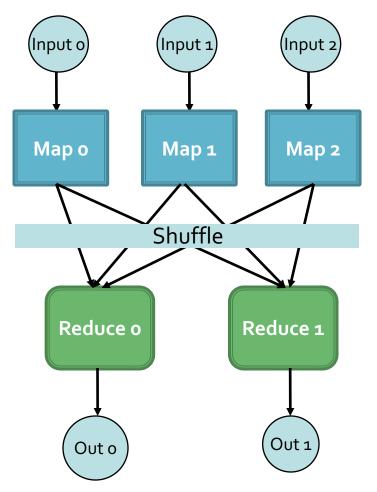
Map-Reduce

Programmer specifies:

- Map and Reduce and input files
- Workflow:
 - Read inputs as a set of key-valuepairs
 - Map transforms input kv-pairs into a new set of k'v'-pairs
 - Sorts & Shuffles the k'v'-pairs to output nodes
 - All k'v'-pairs with a given k' are sent to the same reduce
 - Reduce processes all k'v'-pairs grouped by key into new k''v''-pairs

CSCI 4030

- Write the resulting pairs to files
- All phases are distributed with many tasks doing the work



23

Data Flow

- Input and final output are stored on a distributed file system (FS):
 - Scheduler tries to schedule map tasks "close" to physical storage location of input data
- Intermediate results are stored on local FS of Map and Reduce workers
- Output is often input to another MapReduce task

Coordination: Master

- Master node takes care of coordination:
 - Task status: (idle, in-progress, completed)
 - Idle tasks get scheduled as workers become available
 - When a map task completes, it sends the master the location and sizes of its *R* intermediate files, one for each reducer
 - Master pushes this info to reducers
- Master pings workers periodically to detect failures

Dealing with Failures

Map worker failure

- Map tasks completed or in-progress at worker are reset to idle
- Reduce workers are notified when task is rescheduled on another worker

Reduce worker failure

- Only in-progress tasks are reset to idle
- Reduce task is restarted

Master failure

MapReduce task is aborted and client is notified

How many Map and Reduce jobs?

- M map tasks, R reduce tasks
- Rule of a thumb:
 - Make M much larger than the number of nodes in the cluster
 - One DFS chunk per map is common
 - Improves dynamic load balancing and speeds up recovery from worker failures
- Usually R is smaller than M
 - Because output is spread across R files

Task Granularity & Pipelining

Fine granularity tasks: map tasks >> machines

- Minimizes time for fault recovery
- Can do pipeline shuffling with map execution
- Better dynamic load balancing

Process	Time>										
User Program	MapReduce()	wait									
Master	Assign tasks to worker machines										
Worker 1		Map 1	Map 3								
Worker 2		Map 2									
Worker 3			Read 1.1	Read 1.3		Read 1.2	I	Reduce	1		
Worker 4		Read 2.1			Read 2.2	Read	2.3 R	educe 2			

Refinements: Backup Tasks

Problem

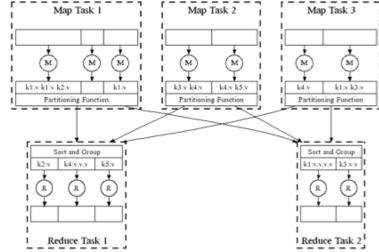
- Slow workers significantly lengthen the job completion time:
 - Other jobs on the machine
 - Bad disks
 - Weird things

Solution

- Near end of phase, spawn backup copies of tasks
 - Whichever one finishes first "wins"
- Effect
 - Dramatically shortens job completion time

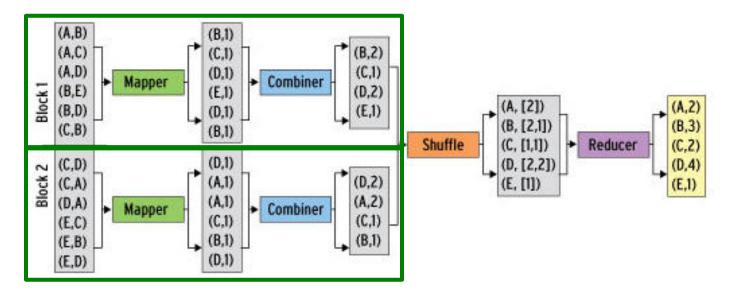
Refinement: Combiners

- Often a Map task will produce many pairs of the form (k,v₁), (k,v₂), ... for the same key k
 - E.g., popular words in the word count example
- Can save network time by pre-aggregating values in the mapper:
 - combine(k, list(v₁)) \rightarrow v₂
 - Combiner is usually same as the reduce function
- Works only if reduce function is commutative and associative



Refinement: Combiners

- Back to our word counting example:
 - Combiner combines the values of all keys of a single mapper (single machine):



Much less data needs to be copied and shuffled!

Refinement: Partition Function

Want to control how keys get partitioned

- Inputs to map tasks are created by contiguous splits of input file
- Reduce needs to ensure that records with the same intermediate key end up at the same worker
- System uses a default partition function:
 - hash(key) mod R
- Sometimes useful to override the hash function:
 - E.g., hash(hostname(URL)) mod R ensures URLs from a host end up in the same output file

Problems Suited for Map-Reduce

Example: Host size

- Suppose we have a large web corpus
- Look at the metadata file
 - Lines of the form: (URL, size, date, ...)

For each host, find the total number of bytes

That is, the sum of the page sizes for all URLs from that particular host

Other examples:

- Link analysis and graph processing
- Machine Learning algorithms

Example: Language Model

Statistical machine translation:

 Need to count number of times every 5-word sequence occurs in a large corpus of documents

Very easy with MapReduce:

- Map:
 - Extract (5-word sequence, count) from document

Reduce:

Combine the counts

Example: Join By Map-Reduce

- Compute the natural join R(A,B) ⋈ S(B,C)
- R and S are each stored in files
- Tuples are pairs (a,b) or (b,c)

Α	B		В	С		Α	С
a ₁	b ₁		b ₂	C ₁		a ₃	C ₁
a ₂	b ₁	\bowtie	b ₂	C ₂	=	a_3	C ₂
a_3	b ₂		b ₃	C ₃		a ₄	C ₃
a ₄	b ₃		c				

R

Map-Reduce Join

- Use a hash function h from B-values to 1...k
- A Map process turns:
 - Each input tuple R(a,b) into key-value pair (b,(a,R))
 - Each input tuple S(b,c) into (b,(c,S))
- Map processes send each key-value pair with key b to Reduce process h(b)
 - Hadoop does this automatically; just tell it what k is.
- Each Reduce process matches all the pairs (b,(a,R)) with all (b,(c,S)) and outputs (a,b,c).

Cost Measures for Algorithms

- In MapReduce we quantify the cost of an algorithm using
- Communication cost = total I/O of all processes
- 2. Elapsed communication cost = max of I/O along any path
- 3. (*Elapsed*) *computation cost* analogous, but count only running time of processes

Note that here the big-O notation is not the most useful (adding more machines is always an option)

Example: Cost Measures

For a map-reduce algorithm:

- Communication cost = input file size + 2 × (sum of the sizes of all files passed from Map processes to Reduce processes) + the sum of the output sizes of the Reduce processes.
- Elapsed communication cost is the sum of the largest input + output for any map process, plus the same for any reduce process

What Cost Measures Mean

- Either the I/O (communication) or processing (computation) cost dominates
 - Ignore one or the other
- Total cost tells what you pay in rent from your friendly neighborhood cloud
- Elapsed cost is wall-clock time using parallelism

Cost of Map-Reduce Join

- Total communication cost = $O(|R|+|S|+|R \bowtie S|)$
- Elapsed communication cost = O(s)
 - We're going to pick k and the number of Map processes so that the I/O limit s is respected
 - We put a limit s on the amount of input or output that any one process can have. s could be:
 - What fits in main memory
 - What fits on local disk
- With proper indexes, computation cost is linear in the input + output size
 - So computation cost is like comm. cost

Pointers and Further Reading

Implementations

Google

Not available outside Google

Hadoop

- An open-source implementation in Java
- Uses HDFS for stable storage
- Download: <u>http://lucene.apache.org/hadoop/</u>
- Aster Data
 - Cluster-optimized SQL Database that also implements MapReduce

Cloud Computing

- Ability to rent computing by the hour
 Additional services e.g., persistent storage
- Amazon's "Elastic Compute Cloud" (EC2)
- Aster Data and Hadoop can both be run on EC2

Reading

- Jeffrey Dean and Sanjay Ghemawat: MapReduce: Simplified Data Processing on Large Clusters
 - <u>http://labs.google.com/papers/mapreduce.html</u>
- Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung: The Google File System
 - http://labs.google.com/papers/gfs.html

Resources

- Hadoop Wiki
 - Introduction
 - http://wiki.apache.org/lucene-hadoop/
 - Getting Started
 - <u>http://wiki.apache.org/lucene-hadoop/GettingStartedWithHadoop</u>
 - Map/Reduce Overview
 - http://wiki.apache.org/lucene-hadoop/HadoopMapReduce
 - <u>http://wiki.apache.org/lucenehadoop/HadoopMapRedClasses</u>
 - Eclipse Environment
 - <u>http://wiki.apache.org/lucene-hadoop/EclipseEnvironment</u>
- Javadoc
 - http://lucene.apache.org/hadoop/docs/api/

Resources

- Releases from Apache download mirrors
 - http://www.apache.org/dyn/closer.cgi/lucene/had oop/
- Nightly builds of source
 - <u>http://people.apache.org/dist/lucene/hadoop/nig</u>
 <u>htly/</u>
- Source code from subversion
 - <u>http://lucene.apache.org/hadoop/version_control</u>
 <u>.html</u>

Further Reading

- Programming model inspired by functional language primitives
- Partitioning/shuffling similar to many large-scale sorting systems
 - NOW-Sort ['97]
- Re-execution for fault tolerance
 - BAD-FS ['04] and TACC ['97]
- Locality optimization has parallels with Active Disks/Diamond work
 - Active Disks ['01], Diamond ['04]
- Backup tasks similar to Eager Scheduling in Charlotte system
 - Charlotte ['96]
- Dynamic load balancing solves similar problem as River's distributed queues
 - River ['99]